Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` Thay `m=3` vào ptr có: `x^2-3x+3-1=0<=>x^2-3x+2=0`
Ptr có: `a+b+c=1-3+2=0=>x_1 =1;x_2=-2`
`@` Ptr có: `\Delta=(-m)^2-4m+4=m^2-4m+4=(m-2)^2 >= 0` (Luôn đúng `AA m`)
`=> AA m` ptr luôn có nghiệm.
______________________________
`x^2-2mx+m=7<=>x^2-2mx+m-7=0`
Ptr có: `\Delta'=(-m)^2-m+7=m^2-m+7=(m-1/2)^2+27/4 > 0 AA m`
`=>` Ptr có `2` nghiệm pb `AA m`
a: Thay x=-3 vào pt, ta được:
9+6m+2m+1=0
=>8m+10=0
hay m=-5/4
b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m+1\right)\)
\(=4m^2-8m-4\)
\(=4\left(m-2\right)\left(m+1\right)\)
Để phương trình có hai nghiệm thì (m-2)(m+1)>=0
=>m>=2 hoặc m<=-1
c: Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2+2x_1x_2=16\)
\(\Leftrightarrow\left(2m\right)^2=16\)
=>2m=4 hoặc 2m=-4
=>m=2(nhận) hoặc m=-2(nhận)
1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)
Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)
Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)
a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)
b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)
Vậy \(m>\frac{1+\sqrt{13}}{2}\)
2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)
Ta thấy \(\Delta=4m^2+1>0\forall m\)
Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m
b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)
Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)
\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)
\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)
Vậy \(m=0\)thoă mãn yêu cầu bài toán
Ta có: \(\Delta'=2m^2+4>0\forall m\)
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-m^2-4\end{matrix}\right.\)
Mặt khác: \(x_1^2+x_2^2=20\)
\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=20\)
\(\Rightarrow4m^2+2m^2-12=0\) \(\Leftrightarrow\left[{}\begin{matrix}m=-2\\m=\dfrac{3}{2}\end{matrix}\right.\)
Vậy ...
a) Thay m=3
\(x^2-2.3.m+3^2-3=0\)
\(x^2-6x+6=0\)
\(\text{∆}=6^2-4.6=12>0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{6+\sqrt{12}}{2}=3+\sqrt{3}\\x=\dfrac{6-\sqrt{12}}{2}=3-\sqrt{3}\end{matrix}\right.\)
b) \(\text{∆}=\left(-2m\right)^2-4.\left(m^2-3\right)\)
\(=4m^2-4m^2+12=12>0\)
⇒ pt có 2 nghiệm phân biệt với mọi m