K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2023

a.

Do \(x_1=-1\) là nghiệm

\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)

\(\Rightarrow m-3-m-5-m+7=0\)

\(\Rightarrow m=-1\)

Theo định lý Viet:

\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)

b.

Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)

21 tháng 4 2023

a.

Do x1=−1�1=−1 là nghiệm

⇒(m−3).(−1)2+(m+5).(−1)−m+7=0⇒(�−3).(−1)2+(�+5).(−1)−�+7=0

⇒m−3−m−5−m+7=0⇒�−3−�−5−�+7=0

⇒m=−1⇒�=−1

Theo định lý Viet:

x1+x2=−m+5m−3=1⇒x2=1−x1=2�1+�2=−�+5�−3=1⇒�2=1−�1=2

b.

Đề bài câu này sai, với m=3�=3 pt này chỉ có 1 nghiệm x=−12

NV
10 tháng 5 2021

\(\Delta'=\left(m-1\right)^2+m^2+1>0\) ;\(\forall m\Rightarrow\) phương trình luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\left(2m+1\right)\\x_1x_2=-m^2-1\end{matrix}\right.\)

Đặt \(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}\)

\(A=\dfrac{2m+1}{m^2+1}\ge0\Leftrightarrow2m+1\ge0\Rightarrow m\ge-\dfrac{1}{2}\)

NV
22 tháng 3 2022

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)

16 tháng 3 2022

a, \(\Delta'=m^2-2m+1=\left(m-1\right)^2\)

Vậy pt luôn có 2 nghiệm 

b, để pt có 2 nghiệm pb khi m khác 1 

c, để pt có nghiệm kép khi m = 1 

d. Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2m\left(1\right)\\x_1x_2=2m-1\left(2\right)\end{matrix}\right.\)

Ta có \(x_1-2x_2=0\left(3\right)\)

Từ (1) ; (3) ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1-2x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m\\x_1=2m-x_2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=2m-3\\x_1=2m-2m+3=3\end{matrix}\right.\)

Thay vào (2) ta được \(6m-9=2m-1\Leftrightarrow m=2\)