K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha

1 tháng 5 2021

\(x^2-\left(2m+1\right)x+m^2+m-6=0\)

\(\Delta=\left(2m+1\right)^2-4m^2-4m+24\)

\(=4m^2+4m+1-4m^2-3m+24\)

\(=25>0\)

\(\Rightarrow\)pt luôn có hai nghiệm phân biệt \(x_1,x_2\)\(\forall m\)

Theo hệ thức Vi-et ta có:

\(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{cases}}\)

Ta có: \(\left(x_1-x_2\right)^2=x_1^2-2x_1x_2+x_2^2\)

                                  \(=\left(x_1+x_2\right)^2-4x_1x_2\)

                                  \(=\left(2m+1\right)^2-4\left(m^2+m-6\right)=25\)

\(\Rightarrow x_1-x_2=\pm5\)

Ta có\(\left|x_1^2-x_2^2\right|=5\)

\(\Leftrightarrow\left|\left(x_1-x_2\right)\left(x_1+x_2\right)\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}\left|10m+5\right|=50\\\left|-10-5\right|=50\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}10m+5=50\\-10m-5=50\end{cases}}\)

( chỗ này mình ko biết trình bày đúng không vì có phá giá trị tuyệt đối thì nó vẫn là hoán vị thôi )

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{9}{2}\\m=\frac{-11}{2}\end{cases}}\)

Vậy \(m\in\left\{\frac{9}{2};\frac{-11}{2}\right\}\)để ...

( check hộ mình nha )

12 tháng 7 2017

a) thay m=1 vào phương trình ta được phương trình:

\(x^2-2\left(1-1\right)x-2.1=0\\ \Leftrightarrow x^2-2x-2=0\\ \Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2\right)=12\)

vậy phương trình có hai nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+\sqrt{12}}{2}=1+\sqrt{3}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-\sqrt{12}}{2}=1-\sqrt{3}\)

5 tháng 6 2017

Bạn quy đồng cái đk cho trước lên,,rồi thay x1+x2 và x1.x2 vào,,,, OK???

20 tháng 1 2017

Ta có để pt có 2 nghiệm phân biệt thì:

\(\Delta'=\left(m-2\right)^2-\left(m^2-2m\right)>0\)

\(\Leftrightarrow m< 2\)

Theo vi-et ta có

\(\hept{\begin{cases}x_1+x_2=4-2m\\x_1x_2=m^2-2m\end{cases}}\)

Theo đề ta có: \(\frac{2}{x_1^2+x_2^2}-\frac{1}{x_1x_2}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{2}{\left(x_1+x_2\right)^2-4x_1x_2}-\frac{1}{x_1x_2}=\frac{1}{5m}\)

\(\Leftrightarrow\frac{2}{\left(4-2m\right)^2-4\left(m^2-2m\right)}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow\frac{1}{8-4m}-\frac{1}{m^2-2m}=\frac{1}{15m}\)

\(\Leftrightarrow19m+52=0\)

\(\Leftrightarrow m=\frac{52}{19}\)(loại)

Không có m thỏa cái trên

PS: Không biết có nhầm chỗ nào không. Bạn kiểm tra hộ m nhé

20 tháng 1 2017

Mơn bạn nhiều <3

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Trước tiên để PT có 2 nghiệm $x_1,x_2$ thì:

\(\Delta'=1+2m-1>0\Leftrightarrow m>0\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-2m+1\end{matrix}\right.\)

Khi đó, để \(x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8\)

\(\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8\)

\(\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8\)

\(\Leftrightarrow 2(-2m+1)^2-[4-2(-2m+1)]=8\)

\(\Leftrightarrow 8m^2-12m=8\)

\(\Leftrightarrow 2m^2-3m-2=0\) \(\Rightarrow \left[\begin{matrix} m=2\\ m=\frac{-1}{2}\end{matrix}\right.\)

Kết hợp với điều kiện $m>0$ suy ra $m=2$.

AH
Akai Haruma
Giáo viên
18 tháng 6 2019

Lời giải:

Trước tiên để PT có 2 nghiệm $x_1,x_2$ thì:

\(\Delta'=1+2m-1>0\Leftrightarrow m>0\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=-2m+1\end{matrix}\right.\)

Khi đó, để \(x_2^2(x_1^2-1)+x_1^2(x_2^2-1)=8\)

\(\Leftrightarrow 2(x_1x_2)^2-(x_1^2+x_2^2)=8\)

\(\Leftrightarrow 2(x_1x_2)^2-[(x_1+x_2)^2-2x_1x_2]=8\)

\(\Leftrightarrow 2(-2m+1)^2-[4-2(-2m+1)]=8\)

\(\Leftrightarrow 8m^2-12m=8\)

\(\Leftrightarrow 2m^2-3m-2=0\) \(\Rightarrow \left[\begin{matrix} m=2\\ m=\frac{-1}{2}\end{matrix}\right.\)

Kết hợp với điều kiện $m>0$ suy ra $m=2$.

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0