Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Nếu hai mặt phẳng (P) và (Q) song song với nhau và M thuộc mặt phẳng (P) thì:
+ Khoảng cách từ điểm M đến mặt phẳng (Q) không phụ thuộc vào M.
+ Khoảng cách giữa hai mặt phẳng (P) và (Q) chính là khoảng cách từ M đến mặt phẳng (Q)
+ Khoảng cách giữa hai mặt phẳng (P) và (Q) là
+ Đặc biệt, khoảng cách giữa hai mặt phẳng (P) và (Q) là |D - D'| khi và chỉ khi:
A 2 + B 2 + C 2 =1
Do đó, mệnh đề D có thể sai.
Đường thẳng d đi qua M 0 và có vecto chỉ phương n P → (A; B; C)
Do đó phương trình tham số của d là:
Do (P) và (Q) cắt nhau nên n P → ∧ n Q → ≠ 0 → . Đường thẳng d đi qua M 0 và có vecto chỉ phương
Do đó phương trình tham số của d là:
Đặc biệt phương trình trên cũng là phương trình đường thẳng là giao của hai mặt phẳng cắt nhau (P): Ax + By + Cz + D = 0 và (Q): A’x + B’y + C’z + D’ = 0 với M 0 là điểm chung của (P) và (Q).
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
vecto u=(3;-1;2)
=>vecto v=(2;3;-1,5)
vecto AB=(6;2;-1)
Phương trình mặt phẳng cần tìm là:
2(x-6)+3(y-2)-1,5(z+1)=0
=>2x-12+3y-6-1,5z-1,5=0
=>2x+3y-1,5z=19,5
ta tìm được điểm A ( a1, a2,a3) không nằm trong mp :)
tìm đươc 1 vecto pháp tuyến của mp là n = (a,b,c).
tui lo lắng các bác ham điểm không trả lời nên để tạm luôn ở đây, mai tui quay lại xem bài của tui.
gửi câu hỏi rồi tự trả lời 😑