K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2020

x+2/x-m=x+1/x-1( ĐK : x khác m; x khác 1 )

<=> ( x+2)(x-1)=(x+1)(x-m)

<=> x^2+x-2=x^2-xm+x-m

<=>m+xm=2

<=>m(x+1)=2

<=>m=2/x+1

để pt vô no thì m khác 2/x+1

ta có : 

2chia hết (x+1) => x+1 thuộc Ư(2) <=> (x+1) thuộc {+-1;+-2}

=>(2/x+1) thuộc {2;-2;1;-1}

vậy để pt vô no thì m khác 2;-2;1;-1

2 tháng 2 2019

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\)(ĐK:\(x\ne\pm m\))

\(\Leftrightarrow\frac{\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)}{\left(x+m\right)\left(x-m\right)}-\frac{2\left(x-m\right)-2}{m^2-x^2}=0\)

\(\Leftrightarrow\frac{x+m-x^2-mx+x^2-mx-2x+2m}{x^2-m^2}+\frac{2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-\left(2m+2\right)x+3m+2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-2m.x+m-2}{x^2-m^2}=0\)

\(\Rightarrow-2m.x+m-2=0\)

\(\Leftrightarrow x=\frac{m-2}{2m}\)

Để pt vô nghiệm thì \(\frac{m-2}{2m}\) không xác định

Suy ra:\(2m=0\)

Nên \(m=0\)

20 tháng 3 2020

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\left(1\right)\)

\(ĐKXĐ\hept{\begin{cases}x+m\ne0\\x-m\ne0\end{cases}\Leftrightarrow x\ne\pm m}\)

\(\Rightarrow\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)=2-2\left(x-m\right)\)

<=> (2m-1)x=m-2(*)

+)Nếu \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)

Ta có: (*) \(\Leftrightarrow0x=\frac{-3}{2}\)(vô nghiệm)

+)Nếu \(m\ne\frac{1}{2}\)ta có (*) \(\Leftrightarrow x=\frac{m-2}{2m-1}\)

Xét x=m

\(\Leftrightarrow\frac{m-2}{2m-1}=m\Leftrightarrow m-2=2m^2-m\)

\(\Leftrightarrow2m^2-2m+2=0\)

<=> m2-m+1=0

\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(không xảy ra vì vế trái luôn lớn hơn 0)

<=> \(\frac{m-2}{2m-1}\)<=> m-2=-2m2+m

<=> m2=1 <=> \(m=\pm1\)

Vậy phương trình vô nghiệm khi \(\orbr{\begin{cases}m=\frac{1}{2}\\m=\pm1\end{cases}}\)

20 tháng 3 2020

Thanks Đào Phạm Nhật Quỳnh nhé

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4