K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 12 2015

\(A=\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=2-\frac{5}{2x+1}\)

a) A>0 => \(\frac{5}{2x+1}<2\Leftrightarrow2x+1>\frac{5}{2}\Leftrightarrow2x>\frac{3}{2}\Leftrightarrow x>\frac{3}{4}\)

b)A<0 => x <3/4 ; x khác -1/2

c)A =0 khi x = 3/4

d) A thuộc Z khi 2x+1 thuộc U(5) ={1;5;-1;-5}

2x+1 =1 => x =0

2x+1=-1 => x = -1

2x+1 =5 => x =2

2x+1 = -5 => x =-3

6 tháng 4 2017

a) Để A và n thuộc Z => n+1 chia hết cho n-2

A=(n-2+3) chia hết cho n-2

=> 3 chia hết cho n-2

lập bảng=> n thuộc {3,1,5,9,(-1)}

b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1

                                           => n=3

Nhớ tk cho mk nha!

13 tháng 12 2015

Nguyễn Quốc Khánh xóa bớt tin nhắn đi rồi mà nhắn típ

22 tháng 3 2018

a, \(A=\frac{10x+13}{2x+4}\inℤ\Leftrightarrow10x+13⋮2x+4\)

\(\Rightarrow10x+20-7⋮2x+4\)

\(\Rightarrow5\cdot2x+5\cdot4-7⋮2x+4\)

\(\Rightarrow5\left(2x+4\right)-7⋮2x-4\)

      \(5\left(2x+4\right)⋮2x+4\)

\(\Rightarrow7⋮2x-4\)

tới đây bn liệt kê Ư(7) rồi làm tiếp.

b, \(A=\frac{10x+13}{2x+4}=\frac{10x+20-7}{2x+4}=\frac{5\left(2x+4\right)}{2x+4}-\frac{7}{2x+4}=5-\frac{7}{2x+4}\)

để A đạt giá trị nhỏ nhất thì \(\frac{7}{2x+4}\) lớn nhất

=> 2x+4 là số nguyên dương nhỏ nhất

+ xét 2x+4 = 1

=> 2x = -3

=> x = -1,5 loại vì x thuộc Z

+ xét 2x+4=2

=> 2x = -2

=> x = -1 (tm)

vậy x = 1 và \(A_{min}=5-\frac{7}{2}=\frac{3}{2}\)

22 tháng 3 2018

\(A=\frac{x-13}{x+3}\inℤ\Leftrightarrow x-13⋮x+3\)

\(\Rightarrow x+3-16⋮x+3\)

      \(x+3⋮x+3\)

\(\Rightarrow16⋮x+3\)

tự làm tiếp!

b, \(A=\frac{x-13}{x+3}=\frac{x+3-16}{x+3}=\frac{x-3}{x-3}-\frac{16}{x+3}=1-\frac{16}{x+3}\)

để A đạt giá trị nhỏ nhất thì \(\frac{16}{x+3}\) lớn nhất

=> x+3 là số nguyên dương nhỏ nhất

=> x+3=1

=> x = -2

vậy x = -2 và \(A_{min}=1-\frac{16}{1}=-15\)

2 tháng 3 2022

.....

28 tháng 5 2021

\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)

\(a)\)

\(\text{Để A có giá trị nguyên: }\)

\(\frac{9}{x-4}\in Z\)

\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)

\(b)\)

\(\text{Để A có giá trị lớn nhất: }\)

\(\frac{9}{x-4}\)\(\text{lớn nhất}\)

\(x-4=1\)

\(x=5\)

\(c)\)

\(\text{Để A đạt giá trị nhỏ nhất:}\)

\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)

\(x-4=-1\)

\(x=3\)

Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)

Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)

Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)

\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)

b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)

Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4=1\)

\(\Rightarrow x=5\)

\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)

\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)

c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)

Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)

Mà \(x\in N\)\(\Rightarrow x-4\in Z\)

\(\Rightarrow x-4=-1\)

\(\Rightarrow x=3\)

\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)

\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)

20 tháng 4 2016

ĐK: x khác -3

Ta có: \(A=\frac{x+5}{x+3}=1+\frac{2}{x+3}\)

a) Để A là phân số => 2/(x+3) không nguyên => x + 3 không phải là ước số của 2.

2 có các ước: +-1; +-2

\(x+3\ne1\Rightarrow x\ne-2\)

*\(x+3\ne-1\Rightarrow x\ne-4\)

*\(x+3\ne2\Rightarrow x\ne-1\)

\(x+3\ne-2\Rightarrow x\ne-5\)

b) Để A là số nguyên => 2/(x+3)  nguyên=> (x+3) là ước của 2. Tương tự trên => x =-5; -4; -2; -1