Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thay \(x=1\) vào phương trình, ta được:
\(1+2m+1+m^2-3m=0\) \(\Rightarrow m\in\varnothing\)
Vậy khi \(x=1\) thì phương trình vô nghiệm
b) Xét phương trình, ta có: \(\Delta=16m+1\)
Để phương trình có nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\ge-\dfrac{1}{16}\)
Vậy \(m\ge-\dfrac{1}{16}\)
a: Thay m=3 vào pt, ta được:
\(x^2-2\cdot\left(3-1\right)x+3^2-2\cdot3=0\)
\(\Leftrightarrow x^2-4x+3=0\)
=>(x-1)(x-3)=0
=>x=1 hoặc x=3
b: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\left(m^2-2m\right)\)
\(=\left(2m-2\right)^2-4\left(m^2-2m\right)\)
\(=4m^2-8m+4-4m^2+8m=4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Thay x=-2 vào pt, ta được:
\(\left(-2\right)^2-2\cdot\left(-2\right)\cdot\left(m-1\right)+m^2-2m=0\)
\(\Leftrightarrow m^2-2m+4+4\left(m-1\right)=0\)
\(\Leftrightarrow m^2-2m+4+4m-4=0\)
=>m(m+2)=0
=>m=0 hoặc m=-2
Theo hệ thức Vi-et, ta được:
\(x_1+x_2=2\left(m-1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x_2-2=2\cdot\left(-1\right)=-2\\x_2-2=2\cdot\left(-3\right)=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x_2=0\\x_2=-4\end{matrix}\right.\)
c: \(x_1^2+x_2^2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m^2-2m\right)=4\)
\(\Leftrightarrow4m^2-8m+4-2m^2+4m-4=0\)
\(\Leftrightarrow2m^2-4m=0\)
=>2m(m-2)=0
=>m=0 hoặc m=2
Thay x=7+căn 2022 vào pt, ta được:
\(49+14\sqrt{2022}+2022-7-\sqrt{2022}+3m-2=0\)
=>\(3m+2062+13\sqrt{2022}=0\)
=.\(m=\dfrac{-2062-13\sqrt{2022}}{3}\)
1) điều kiện của m: m khác 5/2
thế x=2 vào pt1 ta đc:
(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)
lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2
vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2
3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m
\(\left\{{}\begin{matrix}\left(2m+1\right)x+y=2m-2\left(1\right)\\m^2x-y=m^2-3m\end{matrix}\right.\)
\(\Rightarrow\left(m^2+2m+1\right)x=m^2-m-2\)
\(\Rightarrow x=\dfrac{m^2-m-2}{m^2+2m+1}\left(m\ne-1\right)\)
\(\Rightarrow x=1+\dfrac{-3m-3}{m^2+2m+1}=1+\dfrac{-3\left(m+1\right)}{\left(m+1\right)^2}=1+\dfrac{-3}{m+1}\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow y=2m-2-\left(2m+1\right)\left(1-\dfrac{3}{m+1}\right)\)
\(\Rightarrow y=\dfrac{3m}{m+1}=3+\dfrac{-1}{m+1}\)
\(\Rightarrow x,y\in Z\left(m\in Z\right)\Leftrightarrow\left\{{}\begin{matrix}m+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\\m+1\inƯ\left(1\right)=\left\{\pm1\right\}\end{matrix}\right.\)
\(\Rightarrow m+1=\pm1\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-2\left(tm\right)\end{matrix}\right.\)
Ta có \(\Delta=m^4-8m-8\)
Để pT có nghiệm nguyên
=> \(\Delta\)là số chính phương, \(\Delta\ge0\)
+ \(m=1\)=> \(\Delta=-15\)loại
+ \(m=2\)=> \(\Delta=-8\)loại
+ \(m=3\)=> \(\Delta=49\)
=> \(x=8;x=1\)nhận
+ m=4 => \(\Delta=216\)loại
+ \(m\ge5\)
=> \(2m^2-8m-9>0\)
=> \(\left(m^2-1\right)^2< m^4-8m-8\)
Mà \(-8m-8< 0\)với \(m\inℤ^+\)
=> \(\left(m^2-1\right)^2< m^4-8m-8< \left(m^2\right)^2\)
Lại có \(m^4-8m-8\)là số chính phương
=> không có giá trị nào của m thỏa mãn
Vậy m=3