Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y^2=x\left(x+1\right)\left(x+7\right)\left(x+8\right)\)
\(=\left(x^2+8x\right)\left(x^2+8x+7\right)\)
\(\Rightarrow4y^2=\left(2x^2+16x\right)\left(2x^2+16x+14\right)\)
\(=\left(2x^2+16x+7-7\right)\left(2x^2+16x+7+7\right)\)
\(=\left(2x^2+16x+7\right)^2-49\)
\(\Leftrightarrow\left(2x^2+16x+7\right)^2-4y^2=49\)
\(\Leftrightarrow\left(2x^2+16x+7-2y\right)\left(2x^2+16x+7+2y\right)=49=1.49=7.7\)
Xét các trường hợp và thu được các nghiệm là: \(\left(-3,0\right),\left(0,0\right)\).
x/y = 2/5 ⇒ x/2 = y/5
⇒ x/5 = 2y/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x/2 = 2y/10 = (x + 2y)/(2 + 10) = 36/12 = 3
x/2 = 3 ⇒ x = 2 . 3 = 6
y/5 = 3 ⇒ y = 5 . 3 = 15
Vậy x = 6; y = 10
Tính giá trị của $x+y-2=0$ là sao nhỉ? $x+y-2=0$ sẵn rồi mà bạn?
+) \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\left(1\right)\)
+) Lập phương 2 vế ta được :
\(2x+3\sqrt[3]{x^2-1}\left(\sqrt[3]{x+1}+\sqrt[3]{x-1}\right)=5x\left(2\right)\)
Thay ( 1 ) vào ( 2 ) ta có :
\(\sqrt[3]{x^2-1}.\sqrt[3]{5x}=x\)
\(\Rightarrow4x^3-5x=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x=\pm\frac{\sqrt{5}}{2}\end{cases}}\)
P/s : ko có tgian làm full . Thông cảm nhen ^-^
Mẹo thì không có đâu bạn ạ! ^_^. Cơ bản là bạn phải hiểu vấn đề của bài thôi!
Bạn thử lên youtube học của THẦY QUANG thử xem
Thầy này dạy dễ hiểu lắm
a) ĐKXĐ:
x³ - 1 khác 0
x khác 1
b) A = (5x² + 5x + 5)/(x³ - 1)
= 5(x² + x + 1)/[(x - 1)(x² + x + 1)]
= 5/(x - 1)
Thay x = 7 vào A, ta được:
A = 5/(7 - 1)
= 5/6
a) (2x - 7)/4x + (3 + 4x)/4x
= (2x - 7 + 3 + 4x)/4x
= (6x - 4)/4x
= (3x - 2)/2x
b) (9x - 5)/(x² + x) + (10 - 4x)/(x² + x)
= (9x - 5 + 10 - 4x)/[x(x + 1)]
= (5x + 5)/[x(x + 1)]
= 5(x + 1)/[x(x + 1)]
= 5/x
c) (3x - 9)/(x - 1) : (x² - 9)/(x² - 2x + 1)
= 3(x - 3)/(x - 1) . (x - 1)²/[(x - 3)(x + 3)
= 3(x - 1)/(x + 3)
`Answer:`
\(\frac{\left(m^2+1\right).x+1-2m^2}{x-5}\)\(=2m\left(ĐKXĐ:x\ne5\right)\)
`=>(m^2+1).x+1-2m^2=2m.(x-5)`
`<=>(m^2-2m+1).x=2m^2-10m-1`
`<=>(m-1)^2``x=2m^2-10m-1(1)`
Phương trình `(1)` có nghiệm duy nhất `<=>m\ne1`
Lúc đó nghiệm của phương trình `(1)` sẽ là \(x=\frac{2m^2-10m-1}{\left(m-1\right)^2}\)
Ta xét hiệu:
\(x-3=\frac{2m^2-10m-1}{\left(m-1\right)^2}-3\)
\(=\frac{2m^2-10m-1-3\left(m-1\right)^2}{\left(m-1\right)^2}\)
\(=\frac{-m^2-4m-4}{\left(m-1\right)^2}\)
\(=-\frac{\left(m+2\right)^2}{\left(m-1\right)^2}\)
\(\le0;\forall m\ne1\)
\(\Rightarrow x-3\le0;\forall m\ne1\)
\(\Rightarrow x\le3;\forall m\ne1\)
Dấu "=" xảy ra khi `m+2=0<=>m=-2`