K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2023

\(x^2+mx+4=0\left(1\right)\)

+)Vì phương trình có 1 nghiệm là -1, do đó theo tính chất nhấm nghiệm thì có \(a-b+c=0\)

⇒ nghiệm còn lại là \(-4\).

+) Để phương trình có nghiệm thì \(\Delta\ge0\) hay \(m^2-16\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-4\\m\ge4\end{matrix}\right.\)

Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=4\end{matrix}\right.\)

Có : \(x_1^2+x^2_2=6m-13\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6m-13\)

\(\Leftrightarrow m^2-8=6m-13\)

\(\Leftrightarrow m^2-6m+5=0\Leftrightarrow\left(m-1\right)\left(m-5\right)=0\Leftrightarrow\left[{}\begin{matrix}m=1\left(l\right)\\m=5\left(n\right)\end{matrix}\right.\)

Vậy...

1 tháng 5 2016

Chào ng đẹp

Xét đenta thì ta thấy đenta>0

áp dụng viét

x1*x2=2m-4

x1+x2=m

=>x1*x2/(x1+x2)=m/(2m-4)

Ta có m chia 2m-4 =1/2 dư 2

nên để A có gtrị nguyên thì m=(2m-4)*1/2+2

Giải pt ra tìm m

1 tháng 5 2016

dùng denta hoặc vi-ét mà giải 

13 tháng 2 2020

giúp mình với mình cần nộp trong ngày 17/2/2020

30 tháng 5 2021

ko biết làm

30 tháng 5 2021

Toi lạy bạn luôn r

6 tháng 1 2017

\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)

\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm

\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)

6 tháng 1 2017

a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)

\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)

với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

4 tháng 3 2022

a, Thay x = -5 ta đc 

\(25-5m-35=0\Leftrightarrow-5m-10=0\Leftrightarrow m=-2\)

Thay m = -2 ta đc \(x^2-2x-35=0\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\Leftrightarrow x=-5;x=7\)

b, \(\Delta=m^2-4\left(-35\right)=m^2+4.35>0\)

Vậy pt trên luôn có 2 nghiệm pb 

Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=86\Rightarrow m^2-2\left(-35\right)=86\)

\(\Leftrightarrow m^2=16\Leftrightarrow m=-4;m=4\)

a: Thay x=-5 vào pt, ta được:

25-5m-35=0

=>5m+10=0

hay m=-2

Theo đề, ta có: \(x_1x_2=-35\)

nên \(x_2=7\)

b: \(ac=-1\cdot35< 0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=86\)

\(\Leftrightarrow m^2-2\cdot\left(-35\right)=86\)

hay \(m\in\left\{4;-4\right\}\)