K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 3 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=-3m\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_3=\dfrac{2}{x_1^2}\\x_4=\dfrac{2}{x^2_2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{2}{x_1^2}+\dfrac{2}{x_2^2}\\x_3x_4=\dfrac{4}{x_1^2x_2^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{2\left(x_1+x_2\right)^2-4x_1x_2}{\left(x_1x_2\right)^2}\\x_3x_4=\dfrac{4}{\left(x_1x_2\right)^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_3+x_4=\dfrac{2.\left(-5\right)^2-4\left(-3m\right)}{\left(-3m\right)^2}=\dfrac{12m+50}{9m^2}\\x_3x_4=\dfrac{4}{\left(-3m\right)^2}=\dfrac{4}{9m^2}\end{matrix}\right.\)

\(\Rightarrow x_3;x_4\) là nghiệm:

\(x^2-\left(\dfrac{12m+50}{9m^2}\right)x+\dfrac{4}{9m^2}=0\)

\(\Leftrightarrow9m^2x^2-\left(12m+50\right)x+4=0\)

a: x1+x2=-2; x1x2=-4

x1+x2+2+2=-2+2+2=2

(x1+2)(x2+2)=x1x2+2(x1+x2)+4

=-4+2*(-2)+4=-4

Phương trình cần tìm là x^2-2x-4=0

b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)

\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)

\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)

Phương trình cần tìm sẽ là; x^2-1/5=0

c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)

x1/x2*x2/x1=1

Phương trình cần tìm sẽ là:

x^2+3x+1=0

 

a: Δ=(2m-2)^2-4(m^2-9)

=4m^2-8m+4-4m^2+36=-8m+40

Để pt có nghiệm kép thì -8m+40=0

=>m=5

=>x^2-2(5-1)x+5^2-9=0

=>x^2-8x+16=0

=>x=4

b: Để PT có 2 nghiệm thì -8m+40>=0

=>m<=5

\(M=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

\(=\dfrac{\left(2m-2\right)^2-2\left(m^2-9\right)}{2}-\left(2m-2\right)\)

\(=2\left(m-1\right)^2-m^2+9-2m+2\)

=2m^2-4m+2-m^2-2m+11

=m^2-6m+13

=(m-3)^2+4>=4

Dấu = xảy ra khi m=3

29 tháng 11 2023

\(x^2-4x-6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)

=>Phương trình này có hai nghiệm phân biệt

Theo vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4^2-2\cdot\left(-6\right)=16+12=28\)

\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)

\(C=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)

\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)

\(D=\left|x_1-x_2\right|\)

\(=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)

8 tháng 5 2021

a. thay m=-4 vào (1) ta có:

\(x^2-5x-6=0\)

Δ=b\(^2\)-4ac= (-5)\(^2\) - 4.1.(-6)= 25 + 24= 49 > 0

\(\sqrt{\Delta}=\sqrt{49}=7\)

x\(_1\)=\(\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+7}{2}\)=6

x\(_2\)=\(\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{5-7}{2}\)=-1

vậy khi x=-4 thì pt đã cho có 2 nghiệm x\(_1\)=6; x\(_2\)=-1

 

NV
4 tháng 4 2021

\(ac=-3< 0\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\Leftrightarrow\dfrac{x_1^3+x_2^3}{\left(x_1x_2\right)^2}=m-1\)

\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{9}=m-1\)

\(\Leftrightarrow8\left(m-1\right)^3+18\left(m-1\right)=9\left(m-1\right)\)

\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=1\\8\left(m-1\right)^2+9=0\left(vô-nghiệm\right)\end{matrix}\right.\)

NV
14 tháng 4 2022

1.

\(a+b+c=0\) nên pt luôn có 2 nghiệm

\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)

Dấu "=" xảy ra khi \(m=1\)

2.

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)

\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)

\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)

15 tháng 4 2022

undefined

a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4m^2-4m+1+3\)

\(=\left(2m-1\right)^2+3>0\forall x\)

Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)

Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)

\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)

\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)

\(=2m-2-\dfrac{2m-2}{m}\)

\(=\dfrac{2m^2-2m-2m+2}{m}\)

\(=\dfrac{2m^2-4m+2}{m}\)

\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)

\(=\dfrac{2\left(m-1\right)^2}{m}\)

Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)

\(=-m+2+\dfrac{1}{-m}\)

\(=-m+2-\dfrac{1}{m}\)

\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)

\(=\dfrac{-m^2+2m-1}{m}\)

\(=\dfrac{-\left(m-1\right)^2}{m}\)

Phương trình đó sẽ là:

\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)

11 tháng 2 2023

Giả sử ta định m sao cho pt \(x^2-mx+m-1=0\left(1\right)\) luôn có nghiệm.

Theo định lí Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)

\(C=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2\left(x_1x_2+1\right)}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)

\(\Rightarrow C\left(m^2+2\right)=2m+1\Rightarrow Cm^2-2m+\left(2C+1\right)=0\left(2\right)\)

Coi phương trình (2) là phương trình ẩn m tham số C, ta có:

\(\Delta'=1^2-C.\left(2C+1\right)=-2C^2-C+1\)

Để phương trình (2) có nghiệm thì:

\(\Delta'\ge0\Rightarrow-2C^2-C+1\ge0\)

\(\Leftrightarrow\left(2C-1\right)\left(C+1\right)\le0\)

\(\Leftrightarrow-1\le C\le\dfrac{1}{2}\)

Vậy \(MinC=-1;MaxC=\dfrac{1}{2}\)

11 tháng 2 2023

Cảm ơn bạn nhiều