K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: x1=4x2 và x1+x2=10

=>x1=8; x2=2

x1*x2=m

=>m=16

b: Sửa đề: x1^3+x2^3=370

=>(x1+x2)^3-3x1x2(x1+x2)=370

=>1000-30*m=370

=>30m=630

=>m=21

14 tháng 1 2017

Phương trình x2 – 2(m + 1)x + 2m = 0 có a = 1  0 và

∆ ' = ( m + 1 ) 2 – 2 m = m 2 + 1 > 0 ;  m nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  x 1 + x 2 = 2 m + 1 x 1 . x 2 = 2 m

Xét x 1 3 + x 2 3 = 8   ( x 1 + x 2 ) 3   −   3 x 1 . x 2 ( x 1 + x 2 ) = 8

⇔ [ 2 ( m   +   1 ) ] 3   –   3 . 2 m . [ 2 ( m   +   1 ) ]   =   8

  8   ( m 3 + 3 m 2 + 3 m + 1 ) – 6 m ( 2 m + 2 ) = 8 ⇔ 8 m 3 + 12 m 2 + 12 m = 0

⇔ m   ( 2 m 2   + 3 m + 3 ) = 0

⇔ m = 0 2 m 2 + 3 m + 3 = 0

Phương trình 2 m 2 + 3 m + 3 = 0   c ó   ∆ 1 = 3 2 – 4 . 2 . 3 = − 15 < 0 nên phương trình này vô nghiệm

Vậy m = 0 là giá trị cần tìm

Đáp án: C

Δ=(2m)^2-4(m^2+2m+3)

=4m^2-4m^2-8m-12=-8m-12

Để PT có 2 nghiệm pb thì -8m-12>0

=>-8m>12

=>m<-3/2

x1^3+x2^3=108

=>(x1+x2)^3-3x1x2(x1+x2)=108

=>(-2m)^3-3(m^2+2m+3)*(-2m)=108

=>-8m^3+6m(m^2+2m+3)=108

=>-8m^3+6m^3+12m^2+18m-108=0

=>-2m^3+12m^2+18m-108=0

=>-2m^2(m-6)+18(m-6)=0

=>(m-6)(-2m^2+18)=0

=>m=-3

4 tháng 6 2021

Để pt có nghiệm \(\Leftrightarrow\Delta\ge0\Leftrightarrow4-4\left(m-1\right)\ge0\)\(\Leftrightarrow2\ge m\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(1\right)\\x_1x_2=m-1\end{matrix}\right.\) 

\(x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow\left(x_1^4-x_2^4\right)-\left(x_1^3-x_2^3\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)\left(x_1^2+x_2^2\right)-\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[2\left(x_1^2+x_2^2\right)-x_1^2-x_1x_2-x_2^2\right]=0\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(x_1^2+x_2^2-x_1x_2\right)=0\)

\(\Leftrightarrow x_1-x_2=0\) (2) ( vì \(x_1^2-x_1x_2+x_2^2>0;\forall x,y\))

Từ (1) (2) \(\Rightarrow x_1=x_2=1\)

\(\Rightarrow x_1x_2=m-1=1\) \(\Leftrightarrow m=2\) (Thỏa)

Vậy...

28 tháng 4 2018

Để PT có hai nghiệm  x 1 ; x 2  thì:  Δ = 25 − 12 m + 4 ≥ 0 ⇔ 29 − 12 m ≥ 0 ⇔ m ≤ 29 12

Ta có:  x 1 3 − x 2 3 + 3 x 1 x 2 = 75 ⇔ ( x 1 − x 2 ) [ ( x 1 + x 2 ) 2 − x 1 x 2 ] + 3 x 1 x 2 − 75 = 0     (*)

Theo định lý Vi-et ta có:  x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1  thay vào (*) ta được

( x 1 − x 2 ) ( 26 − 3 m ) + 3 ( 3 m − 26 ) = 0 ⇔ ( x 1 − x 2 − 3 ) ( 26 − 3 m ) = 0 ⇔ m = 26 3                   x 1 − x 2 − 3 = 0

Kết hợp với điều kiện thì m = 26/3 không thỏa mãn.

Kết hợp  x 1 − x 2 − 3 = 0  với hệ thức Vi - et ta có hệ:  x 1 − x 2 − 3 = 0 x 1 + x 2 = − 5 x 1 x 2 = 3 m − 1 ⇔ x 1 = − 1 x 2 = − 4 m = 5 3        ( t / m ) .

Vậy m = 5/3  là giá trị cần tìm.

 

26 tháng 9 2019

Phương trình x 2 − mx – m − 1 = 0 có a = 1  0 và  = m 2 – 4(m – 1)

= ( m – 2 ) 2   ≥ 0 ; m nên phương trình luôn có hai nghiệm x 1 ;   x 2

Theo hệ thức Vi-ét ta có  

Xét

x 1 3   +   x 2 3   = − 1 ⇔ ( x 1 + x 2 ) 3 − 3 x 1 . x 2   ( x 1 + x 2 ) = − 1 ⇔ m 3 – 3 m ( - m – 1 ) = − 1

⇔ m 3 + 3 m 2 + 3 m + 1 = 0 ⇔ ( m + 1 ) 3 = 0   ⇔ m = − 1

Vậy m = −1 là giá trị cần tìm.

Đáp án: B

NV
4 tháng 4 2021

\(\Delta=25-4\left(3m-1\right)\ge0\Rightarrow m\le\dfrac{29}{12}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1x_2=3m-1\end{matrix}\right.\)

\(x_1^3-x_2^3+3x_1x_2=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2\right]+3x_1x_2=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(26-3m\right)+9m-3=75\)

\(\Leftrightarrow\left(x_1-x_2\right)\left(26-3m\right)=3\left(26-3m\right)\)

\(\Rightarrow x_1-x_2=3\)

Kết hợp hệ thức Viet: \(\left\{{}\begin{matrix}x_1-x_2=3\\x_1+x_2=-5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=-1\\x_2=-4\end{matrix}\right.\)

Thế vào \(x_1x_2=3m-1\Rightarrow3m-1=4\Rightarrow m=\dfrac{5}{3}\)

4 tháng 4 2021

Cho em hỏi là từ bước biến đổi hệ thức ý, làm thế nào mà từ bước1 lại thành bước 2 được như vậy ạ?

2 tháng 5 2023

Phương trình đã cho có nghiệm phân biệt khi : 

\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)

\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)

Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)

Có \(x_1^3+x_2^3=108\)

\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)

\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)

\(\Leftrightarrow m^3-6m^2-9m+54=0\)

\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)

Kết hợp (*) được m = -3 thỏa mãn