K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 11 2017

∆ = m 2 – 4 (n – 3) = m 2 – 4n + 12

Phương trình đã cho có hai nghiệm x 1 ;   x 2 ⇔ ∆ ≥ 0 ⇔ m 2 – 4 n + 12   ≥ 0

Áp dụng định lý Vi-ét ta có x 1 + x 2 = −   m ;   x 1 . x 2 = n – 3

Ta có:

x 1 − x 2 = 1 x 1 2 − x 2 2 = 7 ⇔ x 1 − x 2 2 = 1 x 1 − x 2 x 1 + x 2 = 7 ⇔ x 1 + x 2 2 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7     ⇔ 49 − 4 x 1 . x 2 = 1 x 1 + x 2 = 7 ⇔ x 1 . x 2 = 12 x 1 + x 2 = 7 ⇔ n − 3 = 12 − m = 7 ⇔ m = − 7 n = 15   

Thử lại ta có: ∆ = ( − 7 ) 2 – 4.15 + 12 = 1 > 0 (tm)

Vậy m = −7; n = 15

Đáp án: C

NV
22 tháng 4 2021

\(\Delta=m^2+12>0\) ; \(\forall m\)

\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)

Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)

câu nào đọc dc thì mọi người giải giúp nhéBài 13. Cho phương trình: x2 – 2mx – 4m – 11 = 0; (x: là ẩn, m: là tham số)a/ Chứng tỏ phương trình luôn có hai nghiệm phân biệt với mọi m.b/ Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn: 51 11221  xxxxBµi 14. Cho ph­¬ng tr×nh bËc hai Èn x, m lµ tham sè : x m x m2     2( 3) 2 7 0 (1)a/ Chøng tá r»ng ph­¬ng tr×nh (1) lu«n cã nghiÖm víi mäi...
Đọc tiếp

câu nào đọc dc thì mọi người giải giúp nhé

Bài 13. Cho phương trình: x2 – 2mx – 4m – 11 = 0; (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có hai nghiệm phân biệt với mọi m.
b/ Tìm m để phương trình có hai nghiệm x1, x2 thoả mãn: 5
1 1
1
2
2
1
 


 x
x
x
x
Bµi 14. Cho ph­¬ng tr×nh bËc hai Èn x, m lµ tham sè : x m x m2     2( 3) 2 7 0 (1)
a/ Chøng tá r»ng ph­¬ng tr×nh (1) lu«n cã nghiÖm víi mäi m.
b/ Gäi hai nghiÖm cña ph­¬ng tr×nh (1) lµ x x1 2; . H·y t×m m ®Ó
1 2
1 1
1 1
m
x x
 
 
Bài 15. Cho phương trình: x2 – (m – 5)x + m – 7 = 0. (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có nghiệm với mọi m.
b/ Tìm giá trị của m để phương trình có hai nghiệm cùng dương.
Bài 16. Cho phương trình: (m – 1)x2 – 5x + 2 = 0. (x: là ẩn, m: là tham số)
Định giá trị của m để phương trình có hai nghiệm cùng âm.
Bµi 17. Cho ph­¬ng tr×nh (Èn x) : 2x2 + mx + m - 3 = 0 (1)
1) Chøng minh r»ng ph­¬ng tr×nh (1) lu«n cã hai nghiÖm ph©n biÖt víi mäi gi¸ trÞ cña m.
2) T×m c¸c gi¸ trÞ cña m ®Ó ph­¬ng tr×nh (1) cã hai nghiÖm tr¸i dÊu vµ nghiÖm ©m cã gi¸ trÞ tuyÖt ®èi lín h¬n
nghiÖm d­¬ng.
Bài 18. Cho phương trình: x2 – (m – 2)x + m – 4 = 0. (x: là ẩn, m: là tham số)
a/ Chứng tỏ phương trình luôn có nghiệm với mọi m.
b/ Tìm giá trị của m để phương trình có hai nhiệm đối nhau.
Bµi 19. Cho ph­¬ng tr×nh bËc hai x m x m2 2    2(2 1) 3 4 0 (x lµ Èn) (1)
a/ Chøng minh r»ng ph­¬ng tr×nh (1) lu«n cã hai nghiÖm ph©n biÖt víi mäi m.
b/ Gäi x1; x2 lµ hai nghiÖm ph©n biÖt cña ph­¬ng tr×nh (1). H·y t×m m ®Ó x x1 2  2 2
 

0
NV
2 tháng 1

Phương trình trên có nghiệm kép khi:

\(\Delta'=\left(m-9\right)^2-\left(m+7\right)\left(-7m+15\right)=0\)

\(\Leftrightarrow8\left(m^2+2m-3\right)=0\)

\(\Leftrightarrow8\left(m-1\right)\left(m+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\)

- Với \(m=1\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-1\)

- Với \(m=-3\) nghiệm kép của pt là \(x=\dfrac{m-9}{m+7}=-3\)

NV
21 tháng 3 2021

\(\Delta=\left(m+4\right)^2-4\left(m-1\right)=\left(m+2\right)^2+16>0;\forall m\)

Kết hợp hệ thức Viet và điều kiện đề bài:

\(\left\{{}\begin{matrix}x_1+x_2=m+4\\2x_1+3x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}3x_1+3x_2=3m+12\\2x_1+3x_2=7\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3m+5\\x_2=-2m-1\end{matrix}\right.\)

Mặt khác: \(x_1x_2=m-1\)

\(\Rightarrow\left(3m+5\right)\left(-2m-1\right)=m-1\)

\(\Leftrightarrow6m^2+14m+4=0\Rightarrow\left[{}\begin{matrix}m=-2\\m=-\dfrac{1}{3}\end{matrix}\right.\)

\(\text{Δ}=\left(-8\right)^2-4\cdot\left(-3\right)\cdot\left(m-1\right)\)

\(=64+12\left(m-1\right)\)

=64+12m-12

=12m+52

a: Để phương trình có hai nghiệm phân biệt nhỏ hơn 7 thì 

\(\left\{{}\begin{matrix}12m+52>0\\8< 14\end{matrix}\right.\Leftrightarrow m>-\dfrac{13}{4}\)

b: Để phương trình có hai nghiệm phân biệt lớn hơn 7 thì \(\left\{{}\begin{matrix}12m+52>0\\8>14\end{matrix}\right.\Leftrightarrow m\in\varnothing\)