K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

ko bít làm

9 tháng 5 2016

đợi đang nghĩ

NV
23 tháng 4 2021

\(\Delta=a^2-4\left(b+2\right)>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-a\\x_1x_2=b+2\end{matrix}\right.\) (1)

\(\left\{{}\begin{matrix}x_1-x_2=4\\\left(x_1-x_2\right)^3+3x_1x_2\left(x_1-x_2\right)=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\64+12x_1x_2=28\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=4\\x_1x_2=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3\\x_2=-1\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x_1=1\\x_2=-3\end{matrix}\right.\)

Thế vào (1) để tìm a; b

DD
10 tháng 6 2021

\(ax_1+bx_2+c=0\)

\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).

Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).

Thật vậy, ta có: 

\(a^2c+ac^2+b^3-3abc=0\)

\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)

\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)

\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)

\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.

Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng. 

Khi đó \(M=0+2018=2018\).

1 tháng 12 2020

Tham khảo:

Câu hỏi của Nguyễn Ngọc Ánh - Toán lớp 10 | Học trực tuyến