K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2023

\(cos^3x+sin^3x=sin2x+sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(1-\dfrac{sin2x}{2}\right)=sin2x+sinx+cosx\\ \Leftrightarrow-\dfrac{1}{2}sin2x\left(sinx+cosx+2\right)=0\\ \)

Mà \(sinx+cosx=\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)>-2\)

\(\Rightarrow sin2x=0\Leftrightarrow x=\dfrac{k\pi}{2}\left(k\in Z\right)\)

Tổng các nghiệm của phương trình trong \(\left[0;2018\pi\right]\) là:

\(S=\dfrac{\left(0+2018\pi\right)\left(\dfrac{2018\pi-0}{\dfrac{\pi}{2}}+1\right)}{2}=4073333\pi\)

23 tháng 5 2019

13 tháng 3 2019

2 tháng 3 2019

12 tháng 2 2017

NV
7 tháng 11 2021

\(sin^2x-2m.sinx.cosx-sinx.cosx+2mcos^2x=0\)

\(\Leftrightarrow sinx\left(sinx-cosx\right)-2mcosx\left(sinx-cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-2m.cosx\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}sinx=cosx\\sinx=2m.cosx\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}tanx=1\\tanx=2m\end{matrix}\right.\)

Do \(tanx=1\) ko có nghiệm đã cho nên \(tanx=2m\) phải có nghiệm trên khoảng đã cho

\(\Rightarrow tan\left(\dfrac{\pi}{4}\right)< 2m< tan\left(\dfrac{\pi}{3}\right)\)

\(\Rightarrow1< 2m< \sqrt[]{3}\)

\(\Rightarrow m\in\left(\dfrac{1}{2};\dfrac{\sqrt{3}}{2}\right)\) (hoặc có thể 1 đáp án là tập con của tập này cũng được)

21 tháng 12 2018

21 tháng 1 2018

NV
30 tháng 10 2019

\(\Leftrightarrow sin^{2015x}-2sin^{2017}x-cos^{2016}x+2cos^{2018}x-cos2x=0\)

\(\Leftrightarrow sin^{2015}x\left(1-2sin^2x\right)+cos^{2016}x\left(2cos^2x-1\right)-cos2x=0\)

\(\Leftrightarrow cos2x\left(sin^{2015}x+cos^{2016}x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin^{2015}x+cos^{2016}x=1\end{matrix}\right.\)

\(cos2x=0\Rightarrow2x=\frac{\pi}{2}+k\pi\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

\(\left\{{}\begin{matrix}sin^{2015}x\le sin^2x\\cos^{2016}x\le cos^2x\end{matrix}\right.\) \(\Rightarrow sin^{2015}x+cos^{2016}x\le sin^2x+cos^2x=1\)

Dấu "=" xảy ra khi và chỉ khi: \(\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=\pm1\end{matrix}\right.\\\left\{{}\begin{matrix}cosx=0\\sin=1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(-10\le\frac{\pi}{4}+\frac{k\pi}{2}\le30\Rightarrow k=...\)

\(-10\le k\pi\le30\Rightarrow k=...\)

\(-10\le\frac{\pi}{2}+k2\pi\le30\Rightarrow k=...\)

Bạn tự giải nốt và kết luận

28 tháng 1 2019