K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

Để phương trình có hai nghiệm \(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\a\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(3m-1\right)^2-4.\left(m+1\right)\left(2m-2\right)\ge0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m^2-6m+9\ge0\\m\ne-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-3\right)^2\ge0\\m\ne1\end{matrix}\right.\)\(\Leftrightarrow m\ne1\).
​Áp dụng định ly Viet:

\(x_1+x_2=-\dfrac{3m-1}{m+1}=3\)\(\Leftrightarrow3m-1=-3m-3\)\(\Leftrightarrow6m=-2\)\(\Leftrightarrow m=-\dfrac{1}{3}\).
​Vậy \(m=-\dfrac{1}{3}\) là giá trị cần tìm.

3 tháng 5 2017

Để phương trình có hai nghiệm phân biệt âm :
\(\left\{{}\begin{matrix}\Delta>0\\S< 0\\P>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9>0\left(1\right)\\\dfrac{-2\left(m^2-1\right)}{9.2}< 0\left(2\right)\\\dfrac{1}{9}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2>9\\m^2-1>0\end{matrix}\right.\)
Với \(m>2\) thì \(\left(m^2-1\right)^2-9>\left(2^2-1\right)^2-9=0\) nên (1) thỏa mãn.
Với \(m>2\) thì \(m^2-1>2^2-1=3>0\) nên (2) thỏa mãn.

Vậy \(m>2\) phương trình có hai nghiệm âm.

3 tháng 5 2017

Để phương trình có hai nghiệm thì:
\(\left\{{}\begin{matrix}a\ne0\\\Delta\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-1\right)^2-9\ge0\\9\ne0\end{matrix}\right.\)
Áp dụng định lý Viet ta được:
\(x_1+x_2=\dfrac{-2\left(m^2-1\right)}{9}=4\) \(\Leftrightarrow m^2-1=-18\)
\(\Leftrightarrow m^2=-17\) (loại)
Vậy không có giá trị m thỏa mãn.

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NV
12 tháng 5 2019

\(\Delta=\left(2m+1\right)^2-4\left(m-2\right)\left(3m-3\right)=-8m^2+4m0-23\ge0\) ;\(m\ne2\)

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2m-1}{m-2}\\x_1x_2=\frac{3m-3}{m-2}\end{matrix}\right.\)

Do \(x_2\) là nghiệm nên: \(\left(m-2\right)x^2_2-\left(2m+1\right)x_2+3m-3=0\)

\(\Leftrightarrow\left(m-2\right)x_2^2=\left(2m+1\right)x_2-3m+3\)

Thay vào bài toán:

\(\left(2m+1\right)x_1+\left(2m+1\right)x_2-3m+3=m-1\)

\(\Leftrightarrow\left(2m+1\right)\left(x_1+x_2\right)=4m-4\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{m-2}=4m-4\Leftrightarrow\left(2m+1\right)^2=\left(4m-4\right)\left(m-2\right)\)

\(\Leftrightarrow4m^2+4m+1=4m^2-12m+8\)

\(\Leftrightarrow16m=7\Rightarrow m=\frac{7}{16}\)

Bạn tự thay vào điều kiện \(\Delta\) kiểm tra xem có thỏa mãn không

NV
19 tháng 3 2019

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt: \(\left\{{}\begin{matrix}x_1=\frac{2m+1+3}{2}=m+2\\x_2=\frac{2m+1-3}{2}=m-1\end{matrix}\right.\)

Để phương trình có 2 nghiệm âm phân biệt:

\(\Rightarrow x_1< 0\Rightarrow m+2< 0\Rightarrow m< -2\)

Khi đó:

\(A=x_1\left(x_2+5\right)=\left(m+2\right)\left(m-1+5\right)=\left(m+2\right)\left(m+4\right)\)

\(A=m^2+6m+8=\left(m+3\right)^2-1\ge-1\)

\(\Rightarrow A_{min}=-1\) khi \(m+3=0\Leftrightarrow m=-3< -2\) (thỏa mãn)

NV
20 tháng 1 2022

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

1 tháng 4 2017

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

Giải bài 3 trang 160 SGK Đại Số 10 | Giải toán lớp 10

8 tháng 2 2019

sao bạn tính được x2 = 2(m+1) vậy mình chưa hiểu

30 tháng 3 2017

\(3x^2-2\left(m+1\right)x+3m-5=0\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}\\x_1x_2=\dfrac{c}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{3}\\x_1x_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

Theo yêu cầu đề bài \(x_1=3x_2\)

\(\)\(\Rightarrow\left\{{}\begin{matrix}3x_2+x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}4x_2=\dfrac{2\left(m+1\right)}{3}\\3x^2_2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3x_2^2=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\3\left(\dfrac{m+1}{6}\right)^2=\dfrac{3m-5}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{12}=\dfrac{3m-5}{3}\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\dfrac{m^2+2m+1}{4}=3m-5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2+2m+1=12m-20\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\m^2-10m+21=0\end{matrix}\right.\)

\(\Leftrightarrow\)\(\left\{{}\begin{matrix}x_2=\dfrac{m+1}{6}\\\left[{}\begin{matrix}m_1=7\\m_2=3\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}m_1=7\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=\dfrac{4}{3}\end{matrix}\right.\\m_2=3\Rightarrow\left\{{}\begin{matrix}x_1=2\\x_2=\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)