\(x^2-5x+3=0\) . Gọi 2 nghiệm của phương trình là 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2019

 Vì \(x_2\)là nghiệm của phương trình

=> \(x_2^2-5x_2+3=0\)

=> \(x_2+1=x^2_2-4x_2+4=\left(x_2-2\right)^2\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2_{ }=3\end{cases}}\)=> \(x_1^2+x_2^2=19\)

Khi đó

\(A=||x_1-2|-|x_2-2||\)

=> \(A^2=\left(x^2_1+x_2^2\right)-4\left(x_1+x_2\right)+8-2|\left(x_1-2\right)\left(x_2-2\right)|\)

=> \(A^2=19-4.5+8-2|3-2.5+4|=1\)

Mà A>0(đề bài)

=> A=1

Vậy A=1

27 tháng 11 2018

theo vi-ec ta có: \(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=2\\P=x_1.x_2=\dfrac{c}{a}=-15\end{matrix}\right.\)

\(Q=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1.x_2}=\sqrt{2^2-4.\left(-15\right)}=8\)

NV
23 tháng 2 2020

Pt đã cho có 3 nghiệm pb khi nó có một nghiệm bằng 0

\(\Rightarrow m^2-1=0\Rightarrow m=\pm1\)

- Với \(m=1\Rightarrow-x^2=0\) chỉ có 1 nghiệm (ktm)

- Với \(m=-1\Rightarrow-2x^4+x^2=0\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\frac{\sqrt{2}}{2}\end{matrix}\right.\) (t/m)

Vậy \(m=-1\)

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Có \(\sqrt{x+6\sqrt{x-9}}+m\sqrt{x+2\sqrt{x-9}-8}=x+\frac{3m+1}{2}\)

\(\Leftrightarrow \sqrt{(\sqrt{x-9}+3)^2}+m\sqrt{(\sqrt{x-9}+1)^2}=x+\frac{3m+1}{2}\)

\(\Leftrightarrow \sqrt{x-9}+3+m(\sqrt{x-9}+1)=x+\frac{3m+1}{2}\)

\(\sqrt{x-9}(m+1)=x+\frac{3m+1}{2}-m-3\)

\(\Leftrightarrow \sqrt{x-9}(m+1)=x+\frac{m-5}{2}\)

Đặt \(\sqrt{x-9}=t\) . Ta cần tìm m sao cho PT có hai nghiệm \(t_1,t_2| 0\leq t_1< 1< t_2\)

BPT tương đương:

\(t(m+1)=t^2+9+\frac{m-5}{2}\)

\(\Leftrightarrow 2t^2-2t(m+1)+(m+13)=0\)

Để PT có hai nghiệm thì; \(\Delta'=(m+1)^2-2(m+13)>0\)

\(\Leftrightarrow m^2-25>0\Leftrightarrow m>5\) hoặc \(m< -5\) (1)

Khi đó áp dụng hệ thức Viete:

\(\left\{\begin{matrix} t_1+t_2=m+1\\ t_1t_2=\frac{m+13}{2}\end{matrix}\right.\)

Để hai nghiệm thỏa mãn \(0\leq t_1< 1< t_2\Rightarrow \left\{\begin{matrix} t_1t_2\geq 0\\ (t_1-1)(t_2-1)< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ t_1t_2-(t_1+t_2)+1< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{m+13}{2}-(m+1)+1< 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m\geq -13\\ \frac{13-m}{2}< 0\end{matrix}\right.\Leftrightarrow m> 13\) (2)

Kết hợp (1); (2) suy ra $m\geq 13$

1: \(\text{Δ}=\left(-m\right)^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo đề, ta có: m-2<0

=>m<2

2: \(\Leftrightarrow\dfrac{x_1^2+1}{x_1}\cdot\dfrac{x_2^2+1}{x_2}=9\)

\(\Leftrightarrow\dfrac{\left(x_1\cdot x_2\right)^2+\left(x_1+x_2\right)^2-2x_1x_2+1}{x_1x_2}=9\)

\(\Leftrightarrow\dfrac{\left(m-2\right)^2+\left(-m\right)^2-2\left(m-2\right)+1}{m-2}=9\)

\(\Leftrightarrow m^2-4m+4+m^2-2m+4+1=9m-18\)

\(\Leftrightarrow2m^2-6m+9-9m+18=0\)

=>2m^2-15m+27=0

hay \(m\in\varnothing\)

3: =>m=0

16 tháng 6 2020

2b,c mình chỉ ghi cách mà thôi, bạn tự giải nhé :v

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNHChương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

NV
25 tháng 11 2019

\(\Delta'=4-m-3=1-m\ge0\Rightarrow m\le1\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+3\end{matrix}\right.\)

\(x_1^2+x_2^2+\left(x_1x_2\right)^2=51\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1x_2\right)^2-51=0\)

\(\Leftrightarrow\left(x_1x_2\right)^2-2x_1x_2-35=0\Rightarrow\left[{}\begin{matrix}x_1x_2=7\\x_1x_2=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}m+3=7\\m+3=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=4>1\left(l\right)\\m=-8\end{matrix}\right.\)