Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
a: A=x1+x2=-5/2
b: \(=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{2}:\left(-1\right)=\dfrac{5}{2}\)
c: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(-\dfrac{5}{2}\right)^3-3\cdot\dfrac{-5}{2}\cdot\left(-1\right)\)
\(=-\dfrac{125}{8}-\dfrac{15}{2}=\dfrac{-185}{8}\)
e: \(E=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(-\dfrac{5}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{25}{4}+4}=\dfrac{\sqrt{41}}{2}\)
Ptrình : \(x^2-7x+10=0\)
Ta có : \(\Delta=\left(-7\right)^2-4.1.10=9>0\)
=> Phương trình có 2 nghiệm phân biệt \(x1\) và \(x2\)
\(x1=\dfrac{-\left(-7\right)+\sqrt{\Delta}}{2.1}=\dfrac{7+\sqrt{9}}{2}=5\)
\(x2=\dfrac{-\left(-7\right)-\sqrt{\Delta}}{2.1}=\dfrac{7-\sqrt{9}}{2}=2\)
Vậy :
A = \(x_1^2+x_2^2+3x_1x_2=5^2+2^2+3.5.2=59\)
B = .................
.... (có x1 và x2 rồi thik thay vào lak tính đc, cái này bn tự tính nha)
a: x1+x2=-2; x1x2=-4
x1+x2+2+2=-2+2+2=2
(x1+2)(x2+2)=x1x2+2(x1+x2)+4
=-4+2*(-2)+4=-4
Phương trình cần tìm là x^2-2x-4=0
b: \(\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}=\dfrac{x_1+x_2+2}{\left(x_1+1\right)\left(x_2+1\right)}\)
\(=\dfrac{x_1+x_2+2}{x_1x_2+\left(x_1+x_2\right)+1}\)
\(=\dfrac{-2+2}{-4+\left(-2\right)+1}=0\)
\(\dfrac{1}{x_1+1}\cdot\dfrac{1}{x_2+1}=\dfrac{1}{x_1x_2+x_1+x_2+1}=\dfrac{1}{-4-2+1}=\dfrac{-1}{5}\)
Phương trình cần tìm sẽ là; x^2-1/5=0
c: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{x_1^2+x_2^2}{x_1x_2}=\dfrac{\left(-2\right)^2-2\cdot\left(-4\right)}{-4}=\dfrac{4+8}{-4}=-3\)
x1/x2*x2/x1=1
Phương trình cần tìm sẽ là:
x^2+3x+1=0
Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)
Theo đề:
\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)
\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)
Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)
\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))
Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)
Theo hệ thức Viet \(\left\{{}\begin{matrix}x_1+x_2=2>0\\x_1x_2=\dfrac{1}{4}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
\(\Rightarrow A=\dfrac{x_1\left|x_1\right|-x_2\left|x_2\right|}{x_1^3-x_2^3}=\dfrac{x_1^2-x_2^2}{x_1^3-x_2^3}=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2\right)}{\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)}\)
\(=\dfrac{x_1+x_2}{x_1^2+x_1x_2+x_2^2}=\dfrac{x_1+x_2}{\left(x_1+x_2\right)^2-x_1x_2}\)
\(=\dfrac{2}{2^2-\dfrac{1}{4}}=\dfrac{8}{15}\)
a)Có ac=-1<0
=>pt luôn có hai nghiệm trái dấu
b)Do x1;x2 là hai nghiệm của pt
=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)
=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)
\(x^2-4x-6=0\)
\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)
=>Phương trình này có hai nghiệm phân biệt
Theo vi-et, ta có:
\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=4^2-2\cdot\left(-6\right)=16+12=28\)
\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)
\(C=x_1^3+x_2^3\)
\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)
\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)
\(D=\left|x_1-x_2\right|\)
\(=\sqrt{\left(x_1-x_2\right)^2}\)
\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)
Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)
\(Q=\dfrac{x_1}{x_2+2}+\dfrac{x_2}{x_1+2}\)
\(\Rightarrow Q=\dfrac{x_1\left(x_1+2\right)}{\left(x_2+2\right)\left(x_1+2\right)}+\dfrac{x_2\left(x_2+2\right)}{\left(x_2+2\right)\left(x_1+2\right)}\)
\(\Rightarrow Q=\dfrac{x^2_1+2x_1+x^2_2+2x_2}{x_1x_2+2x_1+2x_2+4}\)
\(\Rightarrow Q=\dfrac{\left(x^2_1+x^2_2\right)+\left(2x_1+2x_2\right)}{x_1x_2+\left(2x_1+2x_2\right)+4}\)
\(\Rightarrow Q=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)}{x_1x_2+2\left(x_1+x_2\right)+4}\)
\(\Rightarrow Q=\dfrac{\left(-\dfrac{5}{3}\right)^2-2.\dfrac{2}{3}+2\left(\dfrac{-5}{3}\right)}{\dfrac{2}{3}+2\left(\dfrac{-5}{3}\right)+4}\)
\(\Rightarrow Q=\dfrac{-17}{12}\)