K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2020

Chắc \(x_1^2+x_2^2+x_3^2\) mới đúng chứ? Thầy ghi sai đề à?

NV
18 tháng 9 2020

b.

Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb khác 2

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=6-6m>0\\m\ne-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m\ne-5\end{matrix}\right.\)

Do vai trò của \(x_1;x_2;x_3\) hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x_3=2\)\(x_1;x_2\) là 2 nghiệm của (1) \(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=\frac{3m-1}{2}\end{matrix}\right.\)

\(x_1^2+x_2^2+x_3^2=2x_1x_2x_3-3\left[x_1x_2+x_3\left(x_1+x_2\right)\right]-4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+4=4x_1x_2-3\left(x_1x_2+2\left(x_1+x_2\right)\right)-4\)

\(\Leftrightarrow4-2\left(\frac{3m-1}{2}\right)+4=4\left(\frac{3m-1}{2}\right)-3\left(\frac{3m-1}{2}-4\right)-4\)

\(\Rightarrow m=\frac{1}{3}\)

12 tháng 12 2021

Sửa đề: \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\)

PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow\left(m-3\right)^2+4\left(2m^2-3m\right)>0\\ \Leftrightarrow9m^2-18m+9>0\\ \Leftrightarrow9\left(m-1\right)^2>0\left(\text{luôn đúng},\forall m\ne1\right)\)

Do đó PT có 2 nghiệm phân biệt với mọi \(m\ne1\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=3-m\\x_1x_2=3m-2m^2\end{matrix}\right.\)

Ta có \(\dfrac{x_1x_2}{x_1+x_2}=-\dfrac{m^2}{2}\Leftrightarrow\dfrac{3m-2m^2}{3-m}=-\dfrac{m^2}{2}\)

\(\Leftrightarrow4m^2-12m=3m^2-m^3\\ \Leftrightarrow m^3+m^2-12m=0\\ \Leftrightarrow m\left(m^2+4m-3m-12\right)=0\\ \Leftrightarrow m\left(m+4\right)\left(m-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}m=0\\m=-4\\m=3\end{matrix}\right.\) thỏa yêu cầu đề

NV
22 tháng 7 2021

BPT \(x^2-2mx+m^2-m+3\le0\) có tập nghiệm S đã cho nên \(x_1;x_2\) là nghiệm:

\(x^2-2mx+m^2-m+3=0\) với \(\Delta=m^2-\left(m^2-m+3\right)=m-3\ge0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+3\end{matrix}\right.\)

Mặt khác, do \(x_1\) là nghiệm nên: \(x_1^2=2mx_1-m^2+m-3\)

Thay vào bài toán:

\(\sqrt{2mx_1-m^2+m-3+2mx_2+m^2-m+3}=\left|m-9\right|\)

\(\Leftrightarrow\sqrt{2m\left(x_1+x_2\right)}=\left|m-9\right|\)

\(\Leftrightarrow\sqrt{4m^2}=\left|m-9\right|\)

\(\Leftrightarrow4m^2=m^2-18m+81\Rightarrow\left[{}\begin{matrix}m=3\\m=-9\left(loại\right)\end{matrix}\right.\)

8 tháng 1 2021
Bạn tham khảo nhé!

Bài tập Tất cả

Bài tập Tất cả

NV
18 tháng 9 2020

a/

\(x^3-2mx^2+2x^2-8x+8m-16=0\)

\(\Leftrightarrow\left(x^3+2x^2-8x-16\right)+m\left(-2x^2+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-8\right)-2m\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x^2-8-2m\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-2mx+4m-8\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2-2mx+4m-8=0\left(1\right)\end{matrix}\right.\)

Pt có 3 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb khác -2

\(\Leftrightarrow\left\{{}\begin{matrix}\left(-2\right)^2+4m+4m-8=0\\\Delta'=m^2-4m+8>0\end{matrix}\right.\) (luôn thỏa mãn)

Vậy pt có 3 nghiệm pb với mọi m

b/ Do vai trò của \(x_1;x_2;x_3\) hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x_1=-2\)\(x_2;x_3\) là 2 nghiệm của (1)

\(\Rightarrow\left\{{}\begin{matrix}x_2+x_3=2m\\x_2x_3=4m-8\end{matrix}\right.\) (2)

\(\left(-2\right)^2+\left(x_2+x_3\right)^2-2x_2x_3=5\left(-2+x_2+x_3\right)-4\) (3)

Thế (2) vào (3) là xong

18 tháng 9 2020

Tặng anh trái tim to bự nè
Chương 2: HÀM SỐ BẬC NHẤT VÀ BẬC HAI

NV
20 tháng 1 2022

\(\Delta=\left(3m+2\right)^2-12m=9m^2+4>0\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-3m-2\\x_1x_2=3m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\x_1x_2+x_1+x_2+1=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+1+x_2+1=-3m\\\left(x_1+1\right)\left(x_2+1\right)=-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x_1+1=a\\x_2+1=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=-3m\\ab=-1\end{matrix}\right.\)

\(Q=a^4+b^4\ge2a^2b^2=2\)

Dấu "=" xảy ra khi \(a^2=b^2\Rightarrow\left[{}\begin{matrix}a=b\left(loại\right)\\a=-b\end{matrix}\right.\)

\(\Rightarrow-3m=0\Rightarrow m=0\)

27 tháng 6 2021

b, Ta có : \(0\le x\le1\)

\(\Rightarrow-2\le x-2\le-1< 0\)

Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)

\(=2\left(m-1\right)x-m< 0\)

TH1 : \(m=1\) \(\Leftrightarrow m>0\)

TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)

\(0\le x\le1\)

\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)

\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)

\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)

\(\Leftrightarrow1< m< 2\)

Kết hợp TH1 => m > 0

Vậy ...
 

27 tháng 6 2021

\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)

Để pt có hai nghiệm thỏa mãn

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)

\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)

\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)

\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)

\(=-16m^2+40m\)

Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)

Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)

\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)

\(\Rightarrow P_{max}=16;P_{min}=-144\)

Vậy....