K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: A=x1+x2=-5/2

b: \(=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-5}{2}:\left(-1\right)=\dfrac{5}{2}\)

c: \(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(-\dfrac{5}{2}\right)^3-3\cdot\dfrac{-5}{2}\cdot\left(-1\right)\)

\(=-\dfrac{125}{8}-\dfrac{15}{2}=\dfrac{-185}{8}\)

e: \(E=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{\left(-\dfrac{5}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{25}{4}+4}=\dfrac{\sqrt{41}}{2}\)

7 tháng 4 2022

1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)

   \(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

  \(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)

7 tháng 4 2022

\(1,3x^2+4x+1=0\)

Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :

\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)

Ta có :

\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)

\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)

\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)

\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)

\(=\dfrac{S^2-2P-S}{P-S+1}\)

\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)

\(=\dfrac{11}{12}\)

Vậy \(C=\dfrac{11}{12}\)

28 tháng 5 2023

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=8\end{matrix}\right.\)

Theo đề:

\(B=\dfrac{x_1\sqrt{x_1}-x_2\sqrt{x_2}}{x_1-x_2}=\dfrac{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(x_1+\sqrt{x_1x_2}+x_2\right)}{\left(\sqrt{x_1}-\sqrt{x_2}\right)\left(\sqrt{x_1}+\sqrt{x_2}\right)}\left(x_1,x_2\ge0\right)\)

\(=\dfrac{6+\sqrt{8}}{\sqrt{x_1}+\sqrt{x_2}}\)

Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=6+2\sqrt{8}=6+4\sqrt{2}=\left(\sqrt{4}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{4}+\sqrt{2}\) (thỏa mãn \(x_1,x_2\ge0\))

Khi đó: \(P=\dfrac{6+\sqrt{8}}{\sqrt{4}+\sqrt{2}}=4-\sqrt{2}\)

28 tháng 5 2023

bạn gthich giúp mình trên tử với ạ

 

Câu 1:Cho phương trình: 2x2 + 5x - 8 = 0a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.b) Không giải phương trình, hãy tính giá trị biểu thức: \(A=\dfrac{2}{x_1}+\dfrac{2}{x_2}.\)Câu 2:Cho biểu thức \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với a ≥ 0; a ≠ 4).a) Rút gọn biểu thức P.b) Tính \(\sqrt{P}\) tại a thỏa mãn điều kiện a2 - 7a + 12 = 0.Câu 3:a) Giải hệ phương...
Đọc tiếp

undefined

Câu 1:

Cho phương trình: 2x2 + 5x - 8 = 0

a) Chứng tỏ phương trình luôn có hai nghiệm phân biệt x1, x2.

b) Không giải phương trình, hãy tính giá trị biểu thức: \(A=\dfrac{2}{x_1}+\dfrac{2}{x_2}.\)

Câu 2:

Cho biểu thức \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{a}+2}+\dfrac{4-a}{2-\sqrt{a}}\) (với a ≥ 0; a ≠ 4).

a) Rút gọn biểu thức P.

b) Tính \(\sqrt{P}\) tại a thỏa mãn điều kiện a2 - 7a + 12 = 0.

Câu 3:

a) Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{x}{y}=\dfrac{3}{2}\\3x-2y=5\end{matrix}\right.\)

b) Xác định hệ số a và b của hàm số y = ax + b biết đồ thị của nó là đường thẳng (d) song song với đường thẳng y = x + 2 và chắn trên hai trục tọa độ một tam giác có diện tích bằng 2.

Câu 4: 

Cho đường tròn (O; R), đường kính AD. B là điểm chính giữa của nửa đường tròn, C là điểm trên cung AD không chứa điểm B (C khác A và D) sao cho tam giác ABC nhọn.

a) Chứng minh tam giác ABD vuông cân.

b) Kẻ AM ⊥ BC, BN ⊥ AC. Chứng minh tứ giác ABMN nội tiếp. Xác định tâm I đường tròn ngoại tiếp tứ giác ABMN.

c) Chứng minh điểm O thuộc đường tròn (I).

8
2 tháng 4 2021

Câu 1

a) Xét phương trình : 2x2 +5x - 8 = 0

Có \(\Delta=5^2-4.2.\left(-8\right)=89>0\)

=> Phương trình luôn có 2 nghiệm phân biệt x1, x2

b) Do phương trình luôn có 2 nghiệm x1,x2

=> Theo định lí viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{2}\\x_1.x_2=-4\end{matrix}\right.\)

A = \(\dfrac{2}{x_1}+\dfrac{2}{x_2}=\dfrac{2.x_2}{x_1x_2}+\dfrac{2x_1}{x_1x_2}=\dfrac{2\left(x_1+x_2\right)}{x_1x_2}=\dfrac{2.\left(-\dfrac{5}{2}\right)}{-4}=\dfrac{-5}{-4}=\dfrac{5}{4}\)

Vậy A = \(\dfrac{5}{4}\)

 

2 tháng 4 2021

Câu 2

Ta có \(P=\dfrac{a+4\sqrt{a}+4}{\sqrt{x}+2}+\dfrac{4-a}{2-\sqrt{a}}\left(a\ge0;a\ne4\right)\)

\(=\dfrac{\left(2+\sqrt{a}\right)^2}{2+\sqrt{a}}+\dfrac{\left(2-\sqrt{a}\right)\left(2+\sqrt{a}\right)}{2-\sqrt{a}}\)

\(=\sqrt{a}+2+\left(2+\sqrt{a}\right)=2\sqrt{a}+4\)

Vậy P = \(2\sqrt{a}+4\left(a\ge0;a\ne4\right)\)

b) Ta có a2 - 7a + 12 = 0

\(\Leftrightarrow a^2-4a-3a+12=0\)

\(\Leftrightarrow a\left(a-4\right)-3\left(a-4\right)=0\)

\(\Leftrightarrow\left(a-4\right)\left(a-3\right)=0\Leftrightarrow\left[{}\begin{matrix}a=4\left(loại\right)\\a=3\end{matrix}\right.\)

Với a = 3 thay vào P ta được P = \(2\sqrt{3}+4\)

\(\Rightarrow\sqrt{P}=\sqrt{2\sqrt{3}+4}=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

Vậy \(\sqrt{P}=\sqrt{3}+1\) tại a2 -7a + 12 =0

 

29 tháng 11 2023

\(x^2-4x-6=0\)

\(\text{Δ}=\left(-4\right)^2-4\cdot1\cdot\left(-6\right)=16+24=40>0\)

=>Phương trình này có hai nghiệm phân biệt

Theo vi-et, ta có:

\(x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-4\right)}{1}=4;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-6}{1}=-6\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=4^2-2\cdot\left(-6\right)=16+12=28\)

\(B=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1\cdot x_2}=\dfrac{4}{-6}=-\dfrac{2}{3}\)

\(C=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\cdot\left(x_1+x_2\right)\)

\(=4^3-3\cdot4\cdot\left(-6\right)=64+72=136\)

\(D=\left|x_1-x_2\right|\)

\(=\sqrt{\left(x_1-x_2\right)^2}\)

\(=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4^2-4\cdot\left(-6\right)}=\sqrt{16+24}=\sqrt{40}=2\sqrt{10}\)

24 tháng 5 2021

a)Có ac=-1<0

=>pt luôn có hai nghiệm trái dấu

b)Do x1;x2 là hai nghiệm của pt

=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)

=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)

NV
27 tháng 1 2022

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-1\\x_1x_2=-2+\sqrt{2}\end{matrix}\right.\)

\(A=\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{-1}{-2+\sqrt{2}}=\dfrac{2+\sqrt{2}}{2}\)

\(B=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(-1\right)^2-2\left(-2+\sqrt{2}\right)=5-2\sqrt{2}\)

15 tháng 11 2023

 Ta nhận thấy tổng các hệ số của pt bậc 2 đã cho là \(1-a+a-1=0\) nên pt này có 1 nghiệm là 1, nghiệm kia là \(a-1\), nhưng do không được giải pt nên ta sẽ làm theo cách sau:

 Ta thấy pt này luôn có 2 nghiệm phân biệt. Theo hệ thức Viète:

 \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=a-1\end{matrix}\right.\)

 Vậy, \(M=\dfrac{3\left(x_1^2+x_2^2\right)-3}{x_1x_2\left(x_1+x_2\right)}\)

\(M=\dfrac{3\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left(a^2-2\left(a-1\right)\right)-3}{a\left(a-1\right)}\)

\(M=\dfrac{3\left[\left(a-1\right)^2-1\right]}{a\left(a-1\right)}\)

\(M=\dfrac{3a\left(a+2\right)}{a\left(a-1\right)}\)

\(M=\dfrac{3a+6}{a-1}\)

b) Ta có \(P=\left(x_1+x_2\right)^2-2x_1x_2=a^2-2\left(a-1\right)=\left(a-1\right)^2\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow a=1\). Vậy để P đạt GTNN thì \(a=1\)