K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2022

lập Vi-ét mà tính

 

10 tháng 5 2022

muốn kiểm tra đáp án nên hỏi, chứ ai chả biết ?

12 tháng 5 2021

a, Do  \(x=-4\)là một nghiệm của pt trên nên 

Thay \(x=-4\)vào pt trên pt có dạng : 

\(16+4m-10m+2=0\Leftrightarrow-6m=-18\Leftrightarrow m=3\)

Thay m = 3 vào pt, pt có dạng : \(x^2-3x-28=0\)

\(\Delta=9-4.\left(-28\right)=9+112=121>0\)

vậy pt có 2 nghiệm pb : \(x_1=\frac{3-11}{2}=-\frac{8}{2}=-4;x_2=\frac{3+11}{2}=7\)

b, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=6\\x_1x_2=\frac{c}{a}=7\end{cases}}\)

13 tháng 5 2021

Vậy m=3, và ngiệm còn lại x2=7

30 tháng 3 2021

\(\Delta=4^2-4.1.(-1)=20>0\)

Theo Viét

\(\begin{cases}x_1+x_2=-4\\x_1x_2=1\end{cases}\)

\(A=\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}\)

\(=\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}\)

\(=\dfrac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}+\dfrac{5}{2}\)

\(=\dfrac{(-4)^2-2.1}{1}+\dfrac{5}{2}\)

\(=14+2,5=16,5\)

Vậy \(A=16,5\)

AH
Akai Haruma
Giáo viên
31 tháng 3 2021

Phần Viet của bạn sai rồi. $x_1x_2=\frac{c}{a}=-1$

16 tháng 11 2021

\(F=x_1^2-3x_2-2013\)

Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)

Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)

\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)

12 tháng 4 2017

Theo hệ thức vi ét x1+x2=2; x1x2=-15

x1-x2= căn (x1-x2)2= căn [(x1+x2)2-4x1x2]

bạn thay vào rồi tính nốt nha

5 tháng 4 2020

I don't know don't ask me(hi hi)

27 tháng 5 2023

\(\Delta=25-24=1>0\)

\(\Rightarrow\) phương trình luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo vi ét: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=6\end{matrix}\right.\)

Theo đề có: \(P=x_1^3+x_2^3-\sqrt{x_1}-\sqrt{x_2}\left(x_1,x_2\ge0\right)\)

\(\Leftrightarrow P=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-\left(\sqrt{x_1}+\sqrt{x_2}\right)\)

\(\Leftrightarrow P=5^3-3.6.5-\left(\sqrt{x_1}+\sqrt{x_2}\right)\)

\(\Leftrightarrow P=35-\left(\sqrt{x_1}+\sqrt{x_2}\right)\)

Tính: \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=5+2\sqrt{6}=\left(\sqrt{3}+\sqrt{2}\right)^2\)

\(\Rightarrow\sqrt{x_1}+\sqrt{x_2}=\sqrt{3}+\sqrt{2}\) (thõa mãn \(x_1,x_2\ge0\))

Khi đó: \(P=35-\sqrt{3}-\sqrt{2}\)

Vậy giá trị của biểu thức P là \(35-\sqrt{3}-\sqrt{2}\)

a) Ta có: \(\left\{{}\begin{matrix}3x+y=3\\2x-y=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=10\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2x-7=2\cdot2-7=-3\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là (x,y)=(2;-3)

b) Ta có: \(7x^2-2x+3=0\)

a=7; b=-2; c=3

\(\Delta=\left(-2\right)^2-4\cdot7\cdot3=4-84=-80< 0\)

Suy ra: Phương trình vô nghiệm

Vậy: \(S=\varnothing\)