K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2020

a) PT có 2 nghiệm dương

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\P>0\\S>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+3\right)^2-\left(4m-1\right)\ge0\\4m-1>0\\2\left(m+3\right)>0\end{cases}}\Leftrightarrow\hept{\begin{cases}m^2+2m+10\ge0\\m>\frac{1}{4}\\m>-3\end{cases}}}\)

\(\Leftrightarrow m>\frac{1}{4}\)

b) vì \(\Delta'>0\)nên PT đã cho luôn có hai nghiệm x1,x2 với mọi m.

Áp dụng hệ thức Vi-et,ta có :

\(\hept{\begin{cases}S=2\left(m+3\right)\\P=4m-1\end{cases}}\Leftrightarrow\hept{\begin{cases}2S=4m+12\\P=4m-1\end{cases}}\)

\(\Leftrightarrow2S-P=13\Leftrightarrow2\left(x_1+x_2\right)-x_1x_2=13\)

9 tháng 5 2015

a, Với m=2 thì phương trình (1) trở thành
       x mũ 2 + 2(2+2)x +4.2 -1 =0
<=> x mũ 2 + 8x +7 =0
<=> x mũ 2 + x + 7x +7 =0
<=> (x+1)(x+7) =0
<=> x= -1 hoặc x= -7
b, Ta có:
penta' = (m+2)mũ2 - 4m -1
         = m m 2 +4m +4 -4m -1 
         = m mũ2 +3 

vì m mũ2 luôn > hoặc = 0 với mọi m

suy ra m mũ2 +3 luôn >0 với mọi m

 suy ra penta' >0 hay có hai nghiệm phân biệt (đpcm)

CÒN PHẦN SAU THÌ MK KO BIẾT LÀM .... THÔNG CẢM

 

20 tháng 4 2020

lo hbfbekef evef

frgrgthtgr

t

gr

grgrgrgfrgrf

r

g

rg

r

g

r

gr

f

r

r

br

g

r

gr

gr

grg

r

g

eh

h

h

t

tt

t

t

thr

htr

htht

rh

ththt

ht

ht

h

h

ht

ht

ht

h

frorgew

rnngerjn griigrnbkrtgnngnrrkvggmbemfeegnv4f

v

r

re

eb

tg

bet

eb

1 tháng 6 2020

\(\sqrt[]{}\)

23 tháng 2 2015

1) xét delta là được 

2) áp đụng định lý viet ta có x1+x2 = -2(m+2) = -2m-4 => 2x1 + 2x2 = -4m -8

x1.x2 = 4m-1

ta có 2x1 + 2x2 + x1x2 = -4m-8+4m-1 = -9

vậy hệ thức cần lập là 2x1 + 2x2 + x1x2 = -9

24 tháng 2 2015

delta= (m+2)^2-1(4m-1)=m^2 +5 >0 (luôn đúng với mọi m)

dùng Vi-et: Gọi a và b là hai nghiệm của phương trình

a+b= -2(m+2)

= -4m-4 (1)

ab=4m-1(2)

(1)+(2)

a+b+ab=-5

 

 

a: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-5\right)\)

=4m^2-8m+4-4m+20

=4m^2-12m+24

=(2m-3)^2+15>0

=>Phương trình luôn có nghiệm

b: x1+x2=2m-2; x1x2=m-5

x1+x2=2m-2; 2x1x2=2m-10

=>x1+x2-2x1x2=2m-2-2m+10=8 là hệ thức ko phụ thuộc vào m

12 tháng 2 2023

Ty

4 tháng 3 2022

a, Thay m = 1 ta đc

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)

Để pt có 2 nghiệm pb khi delta' > 0 

\(m-2\ne0\Leftrightarrow m\ne2\)

c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)

NV
4 tháng 3 2022

d. 

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)

Trừ vế cho vế:

\(\Rightarrow x_1+x_2-x_1x_2=1\)

Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m

NV
9 tháng 5 2021

a. Phương trình có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow\left(m+1\right)\left(m+3\right)< 0\)

\(\Leftrightarrow-3< m< -1\)

b. Giả sử pt đã cho có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\x_1x_2=\dfrac{m+3}{m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m-2}{m+1}\\2x_1x_2=\dfrac{2m+6}{m+1}\end{matrix}\right.\) \(\Rightarrow x_1+x_2+2x_1x_2=\dfrac{4m+4}{m+1}=4\)

Vậy \(x_1+x_2+2x_1x_2=4\) là hệ thức liên hệ 2 nghiệm ko phụ thuộc m