Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét phương trình hoành độ giao điểm\(x^2\)+4x-m=0 <=> x^2+4x=m, đây là kết hợp của 2 hàm số (P):y=\(x^2\)+4x và (d):y=m.
Khi vẽ đồ thị ta thấy parabol đồng biến trên khoảng (-2;+∞)=> Điểm giao giữa parabol và đồ thị y=m là điểm duy nhất thỏa mãn phương trình có duy nhất 1 nghiệm thuộc khoảng (-3;1).Vậy để phương trình có 1 nghiệm duy nhất <=> delta=0 <=>16+4m=0<=>m=-4.
mình trình bày hơi dài mong bạn thông cảm
a) Xét: x2 - 4mx + 9.(m – 1)2 = 0 (1)
Δ’ = (2.m)2 – 9.(m – 1)2 = 4m2 – 9.(m2 – 2m + 1) = -5m2 + 18m – 9
Phương trình (1) có nghiệm ⇔ Δ’ ≥ 0
⇔ -5m2 + 18m – 9 ≥ 0
⇔ 5m2 - 18m + 9 ≤ 0
⇔ (5m – 3)(m – 3) ≤ 0
⇔ 3/5 ≤ m ≤ 3.
b) + x1 ; x2 là hai nghiệm của (1) nên theo định lý Vi-et ta có:
+ Tìm hệ thức giữa x1 và x2 không phụ thuộc vào m.
Thử lại:
+ m = 1, (1) trở thành x2 – 4x = 0 có hai nghiệm x = 0; x = 4 có hiệu bằng 4
+ m = 13/5, (1) trở thành có hai nghiệm x = 7,2 và x = 3,2 có hiệu bằng 4.
Vậy m = 1 hoặc m = 13/5.
Ta có: x 2 - 4 x + 6 + 3 m = 0 ⇔ 3 m = - x 2 + 4 x - 6
Số nghiệm của phương trình x 2 - 4 x + 6 + 3 m = 0 là số giao điểm của đường thẳng y = 3 m và parabol y = - x 2 + 4 x - 6
Parabol y = - x 2 + 4 x - 6 có hoành độ đỉnh x = 2 ∈ - 1 ; 3 , hệ số a = - 1 < 0 nên đồng biến khi x < 2 và nghịch biến khi x > 2 .
Bảng biến thiên của hàm số y = - x 2 + 4 x - 6 trên đoạn - 1 ; 3 :
Từ bảng biến thiên ta thấy, nếu phương trình có nghiệm trên đoạn - 1 ; 3 thì đường thẳng y = 3 m phải cắt parabol tại ít nhất 1 điểm có hoành độ thuộc đoạn - 1 ; 3 .
Phương trình có nghiệm thuộc đoạn - 1 ; 3 ⇔ - 11 ≤ 3 m ≤ - 2 ⇔ − 11 3 ≤ m ≤ − 2 3
Đáp án cần chọn là: B
a.
- Với \(m=-1\Rightarrow x=\dfrac{6}{7}\) (ktm)
- Với \(m\ne-1\)
\(\Delta=\left(8m+1\right)^2-24m\left(m+1\right)=40m^2-8m+1>0;\forall m\) \(\Rightarrow\) pt luôn có 2 nghiệm pb
Để pt có 2 nghiệm thỏa mãn: \(x_1< x_2\le1\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_1\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6m}{m+1}-\dfrac{8m+1}{m+1}+1\ge0\\\dfrac{8m+1}{m+1}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m}{m+1}\ge0\\\dfrac{6m-1}{m+1}< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-1< m\le0\\-1< m< \dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)
\(\Rightarrow\) Pt có nghiệm thuộc khoảng đã cho khi: \(\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)
b.
Đặt \(f\left(x\right)=\left(m+1\right)x^2-\left(8m+1\right)x+6m\)
Pt đã cho có đúng 1 nghiệm thuộc (0;1) khi:
\(f\left(0\right).f\left(1\right)< 0\)
\(\Leftrightarrow6m\left(m+1-8m-1+6m\right)< 0\)
\(\Leftrightarrow-6m^2< 0\)
\(\Leftrightarrow m\ne0\)
a: Để phương trình có hai nghiệm trái dấu thì m+2<0
hay m<-2