K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

\(\frac{a}{b}>1\Rightarrow a>b>m\)

Ta có:

\(\frac{a-m}{b-m}=\frac{ab-bm}{\left(b-m\right).b}\)

\(\frac{a}{b}=\frac{ab-am}{\left(b-m\right).b}\)

\(am>bm\left(a>b\right)\)

\(\Rightarrow ab-bm>ab-am\)

\(\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}\left(1\right)\)

\(\frac{a+m}{b+m}=\frac{ab+bm}{\left(b+m\right).b}\)

\(\frac{a}{b}=\frac{ab+am}{\left(b+m\right).b}\)

\(bm< am\left(b< a\right)\)

\(\Rightarrow ab+bm< ab+am\)

\(\Rightarrow\frac{a+m}{b+m}< \frac{a}{b}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a-m}{b-m}>\frac{a}{b}>\frac{a+m}{b+m}\)

9 tháng 7 2016

+ Do a/b > 1

=> a > b

=> a.m > b.m

=> a.b - a.m < a.b - b.m

=> a.(b - m) < b.(a - m)

=> a/b < a-m/b-m (1)

Do a/b > 1

=> a > b

=> a.m > b.m

=> a.m + a.b > b.m + a.b

=> a.(b + m) > b.(a + m)

=> a/b > a+m/b+m (2)

Từ (1) và (2) => a-m/b-m > a/b > a+m/b+m

Ủng hộ mk nha ☆_☆^_-

22 tháng 8 2015

\(\frac{a}{b}=\frac{a\left(b+m\right)}{b\left(b+m\right)}=\frac{ab+am}{b\left(b+m\right)}\)

\(\frac{a+m}{b+m}=\frac{b\left(a+m\right)}{b\left(b+m\right)}=\frac{ab+bm}{b\left(b+m\right)}\)

Vì \(\frac{a}{b}

26 tháng 3 2015

ta có : M > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d +d/a+b+c+d = 1

M < (a/a+b + b/a+b)+(c/c+d + d/c+d) = 1+1=2

=> 1<M<2

=>M ko phải là số tự nhiên

 

26 tháng 3 2015

bạn quy đồng các số hạng trong M ra rồi chứng minh.

27 tháng 9 2016

Ta có:

                \(\frac{a}{b}=\frac{a\times\left(b+m\right)}{b\times\left(b+m\right)}=\frac{a\times b+a\times m}{b\times b+b\times m}\)

                \(\frac{a+m}{b+m}=\frac{\left(a+m\right)\times b}{\left(b+m\right)\times b}=\frac{a\times b+m\times b}{b\times b+b\times m}\)

vì \(\frac{a}{b}>1\) nên \(a>b\), ta suy ra \(a\times m>b\times m\)

hay \(a\times b+a\times m>a\times b+m\times b\)

hay \(\frac{a\times b+a\times m}{b\times b+b\times m}>\frac{a\times b+m\times b}{b\times b+b\times m}\)

hay \(\frac{a}{b}>\frac{a+m}{b+m}\)

27 tháng 9 2016

Vì \(\frac{a}{b}>1\)

=> a > b

=> a.m > b.m

=> a.m + a.b > b.m + a.b

=> a.(b + m) > b.(a + m)

=> \(\frac{a}{b}>\frac{a+m}{b+m}\)

26 tháng 3 2015

chứng minh 1< M < 2 là được M ko phải là STN

30 tháng 3 2018

\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}>\frac{a+b+c+d}{a+b+c+d}=1\)

Chứng minh tương tự để từ đó 

=>M<2

Vậy 1<M<2

=> M ko là số tự nhiên

3 tháng 4 2016

2 > M >/ 4/3  => M không là số N

7 tháng 9 2016

Do \(\frac{a}{b}< 1\)=> a < b

=> a.m < b.m

=> a.m + a.b < b.m + a.b

=> a.(b + m) < b.(a + m)

=> \(\frac{a}{b}< \frac{a+m}{b+m}\)

trong tối nay nha huhu