Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Tìm tất cả các phân số bằng phân số \(\frac{-32}{48}\) và có mẫu là số tự nhiên nhỏ hơn 15
1) Khi bớt ở cả tử số và mẫu số của một phân số thì hiệu giữa mẫu số và tử số của phân số đó không thay đổi. Vậy hiệu giữa mẫu số và tử số là:
47 - 23 = 24
Coi tử số mới là 7 phần bằng nhau thì mẫu số mới là 13 phần như thế, hiệu là 24.
Hiệu số phần bằng nhau là:
13 - 7 = 6 (phần)
Giá trị 1 phần là:
24 : 6 = 4
Tử số mới là:
4 . 7 = 28
Số nguyên cần tìm là:
23 - 28 = -5
Đáp số: -5
a ) Quy đồng : \(\frac{5}{6}=\frac{20}{24}\)
Số tự nhiên cần tìm là :
\(\frac{20}{24}-\frac{17}{24}=\frac{3}{24}\Rightarrow\)số đó là \(3\)
Đổi 5/6 = 20/24
Số tự nhiên cần tìm là : 20/24 - 17/24 = 3/24 => số đó là 3
Các làm của tớ không chắc chắn nhưng kết quả thì đúng !!!!!!!!!!!
Đổi 3/8 = 15/40
Số tụ nhiên cần tìm là : 21/40 - 15/40 = 6/40 => só đó là 6
Bài 1:
Giải:
Gọi số nguyên đó là a ( \(a\in Z\) )
Theo bài ra ta có:
\(\frac{23-a}{47-a}=\frac{7}{13}\Rightarrow\left(23-a\right).13=7.\left(47-a\right)\)
\(\Rightarrow299-13a=329-7a\)
\(\Rightarrow13a-7a=299-329\)
\(\Rightarrow6a=-30\)
\(\Rightarrow a=-5\)
Vậy số cần tìm là -5
Cho phân số tối giản a/b , biết cộng vào cả tử và mẫu với cùng mẫu của phân số đã cho sẽ thu được phấn số mới có giá trị bằng 4 lần giá trị phân số ban đầu.
Nên ta có phuơng trình :
\(\frac{a+b}{b+b}=4\cdot\frac{a}{b}\)
\(\frac{a+b}{2b}=\frac{4a}{b}\)
\(\frac{a+b}{2b}=\frac{4a\cdot2}{b\cdot2}\)
\(\frac{a+b}{2b}=\frac{8a}{2b}\)
Mà\(\frac{a+7a}{2b}=\frac{8a}{2b}\)
Nên \(b=7a.\)
\(a=\frac{1}{7}b.\)
\(\frac{a}{b}=\frac{1}{7}=\frac{2}{14}.........\)
Mà \(\frac{1}{7}\)là phân số tối giản .
Nên phân số thỏa mãn là \(\frac{a}{b}=\frac{1}{7}\)