Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có n+2/n-1=n-1+3/n-1(biến đổi tử để giống mẫu)=1+3/n-1
để n+2/n-1 có giá trị nguyên thì n-1 thuộc Ư(3)
ta có bảng: n-1 1 3
n 2 4
Vậy 2 STn đó là 2 hoặc 4
b, Gọi d là ƯC(n+1;2n+1)
ta có: n+1/2n+1=2n+2/2n+1
d= (2n+2)-(2n+1)= 1
Hai phân số tối giản khi tử và mẫu là 2 số nguyên tố cùng nhau và có ƯC=1
=) phân số đó tối giản
Xem cách giải mình nhé bạn, đúng thì nhé!
Bài 1 .
a) Gọi d \(\in\)ƯC ( n + 1 , 2n + 3 ) . Ta có :
2n + 3 - 2( n + 1 ) \(⋮\)cho d
\(\Rightarrow\)1 chia hết cho d => d = + , - 1
b ) Gọi d \(\in\)ƯC ( 2n + 3 , 4n + 8 ) . Ta có :
4n + 8 - 2( 2n + 3 ) \(⋮\)cho d
\(\Rightarrow\)2 chia hết cho d . Do đó d là Ư của số lẻ 2n + 3 nên d = + , - 1
c ) Xét buểu thức 5( 3n + 2 ) - 3( 5n + 3 ).
Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)
a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)
Ta có bảng :
3n + 4 | 1 | 7 | 13 | 91 |
n | -1 | 1 | 3 | 29 |
nhận xét | loại | thỏa mãn | thỏa mãn | thỏa mãn |
Vậy ......
b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)
=> 3n + 4 ko chia hết cho ước nguyên tố của 91
=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)
=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)
Để 8n+193/4n+3 có giá trị là số tự nhiên.
=> 8n+193 chia hết cho 4n+3
=> 8n+6+187 chia hết cho 4n+3
=> 2.(4n+3)+187 chia hết cho 4n+3
=> 187 chia hết cho 4n+3
=> 4n+3=Ư(187)=(1,11,17,187)
=> 4n=(-2,8,14,184)
mà 4n chia hết cho 4.
=> 4n=(8,184)
=> n=(2,46)
Vậy n=2,46
l-i-k-e cho mình đi mình làm tiếp câu b cho.
a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)
\(\Rightarrow187\div4n+3\Rightarrow4n+3\inƯ\left(187\right)=\left\{17;11;187\right\}\)
+ 4n + 3 = 11 => n = 2
+ 4n +3 = 187 => n = 46
+ 4n + 3 = 17 => 4n = 14 ( loại )
Vậy n = 2 và 46
B) Gọi ƯCLN ( 8n + 193; 4n + 3) = d
=> ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)
=> ( 8n+193 ) - ( 8n + 6 ) : d
=> 187 : d mà A là phân số tối giản => A \(\ne\) 187
=> n \(\ne\) 11k + 2 (k \(\in\) N)
=> n \(\ne\) 17m + 12 (m \(\in\) N )
c) n = 156 => A = 77/19
n = 165 => A = 89/39
n = 167 => A = 139/61
Ta có: . Để AN thì
Vậy n=2; n=46 thì A là số tự nhiên
b) Để A là phân số tối giản thì $ \Rightarrow 4n + 3 \ne 11k;17k. Từ đây bạn rút ra n
c) Sau khi rút ra n đc từ câu b, loại các trường hợp n ko thỏa mãn trong khoảng từ 150 đến 170, các GT còn lại thỏa mãn đề bài
Ta có:\(\frac{2n+3}{n+1}=\frac{2n+2+1}{n+1}=\frac{2.\left(n+1\right)+1}{n+1}\)=\(2+\frac{1}{n+1}\)
A có giá trị lớp nhất \(\Leftrightarrow\frac{1}{n+1}\)có giá trị lớn nhất
Xét \(\frac{1}{n+1}\)
Với n < -1\(\Rightarrow n+1< 0\)
\(\Rightarrow\frac{1}{n+1}< 0\)(1)
Với n > -1 \(\Rightarrow n+1>0\)
\(\Rightarrow\frac{1}{n+1}>0\)
Phân số \(\frac{1}{n+1}\)có tử và mẫu đều lớn hơn 0 nên \(\frac{1}{n+1}\)có giá trị lớn nhất \(\Leftrightarrow n+1\)có giá trị nhỏ nhất
mà n+1 >0
\(\Rightarrow n+1=1\)
\(\Rightarrow n=0\)
Khi đó \(\frac{1}{n+1}=1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{n+1}\)có giá trị lớn nhất là 1
Vậy MAX A= 1+2=3 \(\Leftrightarrow n=0\)