Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)
Lời giải:
Vì $\frac{a}{b}$ là phân số chưa tối giản nên $a,b$ còn có thể chia hết cho chung một số lớn hơn $1$.
Gọi số đó là $d$.
Ta có: $a\vdots d; b\vdots d\Rightarrow 2a\vdots a; a-2b\vdots d$
$\Rightarrow \frac{2a}{a-2b}$ là phân số không tối giản.
Cho a/b là phân số chưa tối giản.Chứng minh rằng các phân số sau chưa tối giản:
a) a-b/2a; b) 2a/a-2b
Do \(\frac{a}{b}\) là một phân số chưa tối giản nên ta có thể đặt \(\hept{\begin{cases}a=md\\b=nd\end{cases}}\left[d=\left(a;b\right);\left(m;n\right)=1\right]\)
Khi đó ta có:
a) \(\frac{a}{a-b}=\frac{md}{md-nd}=\frac{md}{\left(m-n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
b) \(\frac{2a}{a-2b}=\frac{2md}{md-2nd}=\frac{2md}{\left(m-2n\right)d}\) chưa là phân số tối giản (Cả tử vào mẫu vẫn có thể chia cho d để rút gọn)
\(\frac{a}{b}\) là phân số chưa tối giản
\(\Leftrightarrow\hept{\begin{cases}a=k.a_1\\b=k.b_1\end{cases}}\) \(\left[ƯCLN\left(a;b\right)=k;ƯCLN\left(a_1;b_1\right)=1\right]\)
\(\frac{2a}{a-2b}=\frac{2.k.a_1}{k.a_1-2.k.b_1}=\frac{2k.a_1}{k\left(a_1-2.b_1\right)}\) chưa tối giản
=> đpcm
\(\frac{a}{b}\)chưa tối giản => Tồn tại d thuộc N ;d>1 để U(a;b) = d
a) Khi đó a chia hết cho d ; b chia hết cho d => a-b chia hết cho d => U(a;a-b) = d. Hay phân số \(\frac{a}{a-b}\)chưa tối giản.
b) Tương tự, a chia hết cho d; b chia hết cho d => a-2b chia hết cho d; 2a chia hết cho d => U(2a;a-2b) = d hay phân số
\(\frac{2a}{a-2b}\)chưa tối giản.