Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)
Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)
\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
Ta có :
+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)
+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)
Vậy...
b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)
Ta có :
\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)
\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)
\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n
Vậy...
a) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A có giá trị là số nguyên thì:
\(4⋮\left(n-2\right)\)
\(\Rightarrow n-2\inƯ\left(4\right)\)
\(\Rightarrow n-2\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{3;1;4;0;6;-2\right\}\)
b) \(A=\dfrac{n+2}{n-2}=\dfrac{n-2+4}{n-2}=1+\dfrac{4}{n-2}\)
Để A là phân số tối giản thì:
\(4⋮̸\left(n-2\right)\)
\(\Rightarrow n-2\notinƯ\left(4\right)\)
\(\Rightarrow n-2\notin\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\notin\left\{3;1;4;0;6;-2\right\}\) và \(n\in Z\) (\(n\ne2\))
c) Với \(n>2\) (hoặc \(n< -2\)) thì:
\(A=\dfrac{n+2}{n-2}>0\)
Với \(-2\le n< 2\) thì:
\(A=\dfrac{n+2}{n-2}\le0\)
*\(n=1\Rightarrow A=\dfrac{1+2}{1-2}=-3\)
*\(n=0\Rightarrow A=\dfrac{0+2}{0-2}=-1\)
*\(n=-1\Rightarrow A=\dfrac{-1+2}{-1-2}=-\dfrac{1}{3}\)
*\(n=-2\Rightarrow A=\dfrac{-2+2}{-2-2}=0\)
\(\Rightarrow\)Với \(-2\le n< 2\) thì tại \(n=1\) thì A có GTNN là -3.
Mà với các giá trị nguyên khác (khác 2) của n thì A>0.
\(\Rightarrow A_{min}=-3\), đạt được khi \(n=1\)
a) Để A có giá trị nguyên thì \(n-5⋮n+1\)
\(\Leftrightarrow n+1-6⋮n+1\)
mà \(n+1⋮n+1\)
nên \(-6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(-6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
b)
Ta có: \(A=\dfrac{n-5}{n+1}\)
\(=\dfrac{n+1-6}{n+1}\)
\(=1-\dfrac{6}{n+1}\)
Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1
\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)
\(\Leftrightarrow n+1⋮̸6\)
\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)
\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)
Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản
a) \(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Vậy 4 chia hết cho n - 3.
n - 3 lần lượt có các giá trị là: 1;2;4;-1;-2;-4
Nên n lần lượt có các giá trị là: -1;1;2;4;5;7
a)A nguyên
suy ra n+1 chia hết cho n-3
suy ra n-3+4 chia hết cho n-3
mà n-3 chia hết cho n-3
suy ra 4 chia hết cho n-3
suy ra n-3 thuộc ước của a
n thuộcZ
suy ra n-3 thuộc -1,1 -2,2,4,-4
suy ra n=2,4,1,5,7,-1
b)n+1/n-3 là phân số tối giản
suy ra (n+1,n-3)=1
\(A=\frac{n+1}{n-3}\)
\(\Leftrightarrow n+1⋮n-3\)
\(\Leftrightarrow n-3+4⋮n-3\)
Vì \(n-3⋮n-3\)
\(\Leftrightarrow4⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Tự lập bảng r tự lm mấy phần ab