Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên .
=> \(\frac{5}{3n+2}\)là 1 số nguyên
=> 5 chia hết cho 3n+2 .
=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)
Từ đó, ta lập bảng ( khúc này bn tự làm)
Vậy...
b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:
=> 3n+2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhấ
<=> n = 0
A=2n+1/n+2 nguye6n<=>2n+1 chia hết cho n+2
=>2(n+2)-3 chia hết cho n+2
mà 2(n+2) chia hết cho n+2
=>3 chia hết cho n+2
=>n+2 E Ư(3)={-3;-1;1;3}
=>n E {-5;-3;-1;1}
2n + 1 chia hết cho n + 2
2n + 4 - 3 chia hết cho n + 2
3 chia hết cho n + 2
n + 2 thuộc U(3) = {-3 ; -1 ; 1 ; 3}
n thuộc {-5 ; -3; -1 ; 1}
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
Bài này khá đơn giản
===============
Để A nguyên thì 5 chia hết cho n+1 => n+1\(\inƯ_{\left(5\right)}\)
Ta có bảng
-6
Vậy n\(\in\)(4,0,-2,-6) là các giá trị cần tìm
mk giải vậy nè
để A đạt giá trị nguyên thì n+1\(\in\)Ư(5)
\(U\left(5\right)=\left[-5;-1;1;5\right]\)
ta có bảng sau:
vậy n\(\in\)(-6;-2;0;4) để A nguyên