K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

3 tháng 3 2017

a)Ta có:2n+10=(2n-8)+18

Để \(\frac{2n+10}{2n-8}\) là số nguyên thì 

2n+10 \(⋮\) 2n-8

Hay [(2n-8)+18] \(⋮\) 2n-8

vậy 18 phải chia hết cho 2n-8

=)2n-8 \(\in\)Ư(18)={1;-1;18;-18;2;-2;9;-9;3;-3;6;-6}

Ta có bảng:

2n-81-118-182-29-93-36;-6
n4.53.513-2.5538.5-0.55.52.57;1
            

Xin lỗi bạn do phần bảng bị lỗi và mình không rõ đề  là 2n-8 hay 2n+8 hay 2n=8

nên mình lấy là 2n-8 bạn nhé

  
  
  
 
  
  
  
  
  
  
  
  
  
  
  
3 tháng 3 2017

và câu b thì mình chưa có thời gian làm

bạn thông cảm

6 tháng 8 2020

Bg

a) Ta có: B = \(\frac{4n+1}{2n-3}\)            (n thuộc Z)

Để B là số chính phương (scp) thì 4n + 1 chia hết cho 2n - 3 (rồi sau đó xét tiếp)

=> 4n + 1 ⋮ 2n - 3

=> 4n + 1 - 2(2n - 3) chia hết cho 2n - 3

=> 4n + 1 - (2.2n - 2.3) chia hết cho 2n - 3

=> 4n + 1 - (4n - 6) chia hết cho 2n - 3

=> 4n + 1 - 4n + 6 chia hết cho 2n - 3

=> 4n - 4n + 1 + 6 chia hết cho 2n - 3

=> 7 chia hết cho 2n - 3

=> 2n - 3 thuộc Ư(7)

Ư(7) = {1; 7; -1; -7}

Lập bảng:

2n - 3 =17-1-7
n =251-2
(loại vì không phải scp) (loại)(loại) 

Vậy n = {2; -2} thì B là số chính phương

b) Để B là phân số tối giản thì 4n + 1 không chia hết cho 2n - 3  (ta chỉ cần loại những số n trong bảng)

=> n không thuộc {2; 5; 1; -2}

c) Để B đạt giá trị lớn nhất (GTLN) thì 2n - 3 nhỏ nhất và > 0

=> 2n - 3 = 1

=> 2n = 1 + 3

=> 2n = 4

=> n = 4 : 2

=> n = 2

Vậy n = 2 thì B đạt GTLN

b) B =\(\frac{4n+1}{2n-3}\) . Để B là phân số tối giản => (4n+1,2n-3) = 1. Ta lại đặt: (4n+1,2n-3) = d

                                                                                                        => 4n + 1\(⋮\)d, 2n - 3\(⋮\)d => 4n +1- 2(2n-3)\(⋮\)d => 7\(⋮\)d

=> Để d =1 => d\(\ne\)7 => \(\orbr{\begin{cases}4n+1\ne7k\\2n-3\ne7k'\end{cases}\Rightarrow\orbr{\begin{cases}n\ne\frac{7k-1}{4}\\n\ne\frac{7k'+3}{2}\end{cases}\left(k,k'\right)\in}ℤ}\)

c) B =\(\frac{4n+1}{2n-3}\Rightarrow B=\frac{2\left(2n-3\right)+7}{2n-3}\Rightarrow B=2+\frac{7}{2n-3}\).

Để B đạt giá trị nhỏ nhất: \(\Rightarrow\frac{7}{2n-3}\)phải đặt giá trị âm lớn nhất => 2n-3 phải đặt giá trị âm lớn nhất.

2n - 3 <0 => n <\(\frac{3}{2}\)=> n < 1 => n = 1 là giá trị cần tìm. 

Khi đó Bmin =\(2+\frac{7}{2.1-3}=2-7=-5\). Tương tự để Bmax => \(\frac{7}{2n-3}\) phải đặt giá trị dương lớn nhất. 

                                                                                                                      => 2n - 3 đặt giá trị dương nhỏ nhất .

                                                                                                        

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.