Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M = \(\left(\frac{x}{x-3}-\frac{x+3}{3x^2-6x-9}+\frac{1}{3x+3}\right)\)\(\frac{x^2-2x-3}{x^2+x+2}\)
= \(\left(\frac{x\left(3x+3\right)}{3\left(x-3\right)\left(x+1\right)}-\frac{x+3}{3\left(x-3\right)\left(x+1\right)}+\frac{x-3}{3\left(x+1\right)\left(x-3\right)}\right)\)\(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\)
= \(\frac{3\left(x^2+x-2\right)}{3\left(x-3\right)\left(x+1\right)}\)* \(\frac{\left(x+1\right)\left(x-3\right)}{x^2+x+2}\) = \(\frac{x^2+x-2}{x^2+x+2}\)
Ta thấy x2 + x - 2 < x2 + x + 2
nên M < 1
a) \(ĐKXĐ:x\ne\pm2\)
\(D=\frac{3x}{x-2}+\frac{2}{x+2}-\frac{14x-4}{x^2-4}:\frac{x\left(x-1\right)}{x+2}\)
\(\Leftrightarrow D=\frac{3x^2+6x+2x-4-14x+4}{\left(x-2\right)\left(x+2\right)}\cdot\frac{x+2}{x\left(x-1\right)}\)
\(\Leftrightarrow D=\frac{3x^2-6x}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3x\left(x-2\right)}{x\left(x-1\right)\left(x-2\right)}\)
\(\Leftrightarrow D=\frac{3}{x-1}\)
b) Khi \(\left|x-1\right|-3=0\)
\(\Leftrightarrow\left|x-1\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=3\\1-x=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\left(tm\right)\\x=-2\left(ktm\right)\end{cases}}\)
Thay \(x=4\)vào D ta được :\(D=\frac{3}{4-1}=1\)
c) Để D có giá trị nguyên
\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên
\(\Leftrightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x\in\left\{0;2;-2;4\right\}\)
Loại bỏ giá trị \(x=\pm2\)không làm cho biểu thức có nghĩa
Vậy để D có giá trị nguyên \(\Leftrightarrow x\in\left\{0;4\right\}\)
Khi làm bài thì chỉnh lại giúp bạn cái đề:
\(D=\left(\frac{3X}{X-2}+\frac{2}{X+2}-\frac{14X-4}{X^2-4}\right):\frac{X\left(X-1\right)}{X+2}\)
\(A=\frac{1-x^2}{x}.\left(\frac{x^2}{x+3}-1\right)+\frac{3x^2-14x+3}{x^2+3x}\)
\(A=\frac{\left(x^2-x-3\right)\left(-x^2+1\right)}{x\left(x+3\right)}+\frac{3x^2-14x+3}{x^2+3x}\)
\(A=\frac{\left(x^2-x-3\right)\left(1-x^3\right)}{\left(x+3\right)x}+\frac{3x^2-14x+3}{x\left(x+3\right)}\)
\(A=\frac{\left(x^2-x-3\right)\left(1-x^2\right)+3x^2-14x+3}{\left(x+3\right)x}\)
\(A=\frac{-x^4+x^3+7x^2-15x}{x\left(x+3\right)}\)
\(A=\frac{x\left(-x^3+x^2+7x-15\right)}{x\left(x+3\right)}\)
\(A=\frac{-x^3+x^2+7x-15}{x+3}\)
\(A=-\frac{\left(x+3\right)\left(x^2-4x+5\right)}{x+3}\)
\(A=-\left(x^2-4x+5\right)\)
\(A=-x^2+4x-5\)
Trình độ hơi thấp, có gì sai sót xin bỏ qua cho :)
a) \(ĐKXĐ:\hept{\begin{cases}x\ne0\\x\ne-3\\x\ne3\end{cases}}\)
\(A=\left(\frac{1}{3}+\frac{3}{x^2-3x}\right):\left(\frac{x^2}{27-3x^2}+\frac{1}{x+3}\right)\)\(=\left[\frac{1}{3}+\frac{3}{x\left(x-3\right)}\right]:\left(\frac{-x^2}{3x^2-27}+\frac{1}{x+3}\right)\)
\(=\left[\frac{x\left(x-3\right)}{3x\left(x-3\right)}+\frac{9}{3x\left(x-3\right)}\right]:\left[\frac{-x^2}{3\left(x^2-9\right)}+\frac{1}{x+3}\right]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:[\frac{-x^2}{3\left(x-3\right)\left(x+3\right)}+\frac{3\left(x-3\right)}{3\left(x-3\right)\left(x+3\right)}]\)
\(=\frac{x^2-3x+9}{3x\left(x-3\right)}:\frac{-x^2+3x-9}{3\left(x-3\right)\left(x+3\right)}\)\(=\frac{x^2-3x+9}{3x\left(x-3\right)}.\frac{3\left(x-3\right)\left(x+3\right)}{-\left(x^2-3x+9\right)}=\frac{x+3}{-x}=\frac{-x-3}{x}=-1-\frac{3}{x}\)
b) \(A< -1\)\(\Leftrightarrow-1-\frac{3}{x}< -1\)\(\Leftrightarrow\frac{-3}{x}< 0\)
mà \(-3< 0\)\(\Rightarrow x>0\)và \(x\ne3\)
Vậy \(A< -1\Leftrightarrow\hept{\begin{cases}x>0\\x\ne3\end{cases}}\)
c) Vì \(-1\inℤ\)\(\Rightarrow\)Để A nguyên thì \(\frac{3}{x}\inℤ\)\(\Rightarrow3⋮x\)
\(\Rightarrow x\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
So sánh với ĐKXĐ \(\Rightarrow x=\pm3\)loại
Vậy A nguyên \(\Leftrightarrow x=\pm1\)
a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)
ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)
A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)
= \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)
= \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)
b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)
<=> \(\frac{x^2+1}{x+1}+1>0\)
<=> \(\frac{x^2+x+2}{x+1}>0\)
Vì x2 + x + 2 >0 \(\forall x\)
=> A > 0 <=> x + 1 > 0 <=> x > -1