Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a (tóm tắt lại): Phương trình hoành độ giao điểm của (P) và (d):
\(x^2=mx-m+1\)
\(\Leftrightarrow x^2-mx+m-1=0\left(1\right)\)
Để (d) cắt (P) tại 2 điểm phân biệt thì phương trình (1) phải có 2 nghiệm phân biệt. Do đó \(\Delta>0\Leftrightarrow m\ne2\).
b) \(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x+1\right)-m\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-m+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=m-1\end{matrix}\right.\)
Do đó phương trình (1) có 2 nghiệm là x=1 và x=m-1. Mặt khác phương trình (1) cũng có 2 nghiệm phân biệt là x1, x2 và vai trò của x1, x2 trong biểu thức A là như nhau nên ta giả sử \(x_1=1;x_2=m-1\left(m\ne2\right)\)
Từ đây ta có:
\(A=\dfrac{2.1.\left(m-1\right)}{1^2+\left(m-1\right)^2+2\left[1+1.\left(m-1\right)\right]}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m-1\right)^2+2+2\left(m-1\right)}\)
\(=\dfrac{2\left(m-1\right)}{1+\left(m^2-2m+1\right)+2+2m-2}=2.\dfrac{m-1}{m^2+2}\)
\(\Rightarrow A\left(m^2+2\right)=2\left(m-1\right)\)
\(\Leftrightarrow Am^2-2m+2\left(A+1\right)=0\left(2\right)\)
Coi phương trình (2) là phương trình bậc 2 tham số A ẩn x, ta có:
\(\Delta'\left(2\right)=1^2-2A\left(A+1\right)=-2\left(A^2+A\right)+1=-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\)
Để phương trình (2) có nghiệm thì \(\Delta'\left(2\right)\ge0\Rightarrow-2\left(A+\dfrac{1}{2}\right)^2+\dfrac{3}{2}\ge0\)
\(\Leftrightarrow\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{3}+1}{2}\le A\le\dfrac{\sqrt{3}-1}{2}\)
Để phương trình (2) có nghiệm kép thì: \(\Delta'\left(2\right)=0\Rightarrow m=\dfrac{1}{A}\)
\(MinA=-\dfrac{\sqrt{3}+1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}\dfrac{1}{-\dfrac{\sqrt{3}+1}{2}}=1-\sqrt{3}\)
\(MaxA=\dfrac{\sqrt{3}-1}{2}\Leftrightarrow\Delta'\left(2\right)=0\Leftrightarrow m=\dfrac{1}{A}=\dfrac{1}{\dfrac{\sqrt{3}-1}{2}}=\sqrt{3}+1\)
Mình mới sửa một chút nhé.
\(\left(A+\dfrac{1}{2}\right)^2\le\dfrac{3}{4}\) \(\Leftrightarrow\left|A+\dfrac{1}{2}\right|\le\dfrac{\sqrt{3}}{2}\Leftrightarrow\left[{}\begin{matrix}A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\\A+\dfrac{1}{2}\ge\dfrac{-\sqrt{3}}{2}\end{matrix}\right.\Leftrightarrow\dfrac{-\sqrt{3}}{2}\le A+\dfrac{1}{2}\le\dfrac{\sqrt{3}}{2}\)
Nếu gặp dạng \(a^2\le b\) (b là số dương) thì a sẽ bé hơn b và lớn hơn số đối của b, nói chung a nằm trong khoảng từ -b đến b.
Ví dụ: \(a^2\le4\Leftrightarrow\left|a\right|\le2\Leftrightarrow-2\le a\le2\)
a:Khi m=3 thì phương trình hoành độ giao điểm là:
\(x^2-2x-3=0\)
=>(x-3)(x+1)=0
=>x=3 hoặc x=-1
=>y=9 hoặc y=1
b: Phương trình hoành độ giao điểm là:
\(x^2-2x-m=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(-m\right)=4m+4\)
Để phương trình có hai nghiệm phân biệt thì 4m+4>0
hay m>-1
Theo đề, ta có:
\(\left(x_1+x_2\right)^2+\left(x_1+x_2\right)-2x_1x_2=2020\)
\(\Leftrightarrow2^2+2-2\cdot\left(-m\right)=2020\)
=>2m+6=2020
=>2m=2014
hay m=1007
Phương trình hoành độ giao điểm là:
\(\left(2m-1\right)x^2=2\left(m+4\right)x-5m-2\)
=>\(\left(2m-1\right)x^2-\left(2m+8\right)x+5m+2=0\)
Để (P) cắt (d) tại hai điểm phân biệt thì
\(\left\{{}\begin{matrix}2m-1\ne0\\\text{Δ}>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(2m+8\right)^2-4\left(2m-1\right)\left(5m+2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-4\left(10m^2+4m-5m-2\right)>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\4m^2+32m+64-40m^2+4m+8>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-36m^2+36m+72>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\m^2-m-2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\\left(m-2\right)\left(m+1\right)< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne\dfrac{1}{2}\\-1< m< 2\end{matrix}\right.\)
Theo vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-2m-8\right)}{2m-1}=\dfrac{2m+8}{2m-1}\\x_1x_2=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
\(x_1^2+x^2_2=2x_1x_2+16\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=16\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2=16\)
=>\(\left(\dfrac{2m+8}{2m-1}\right)^2-4\cdot\dfrac{5m+2}{2m-1}=16\)
=>\(\dfrac{\left(2m+8\right)^2-4\left(5m+2\right)\left(2m-1\right)}{\left(2m-1\right)^2}=16\)
=>\(\dfrac{4m^2+32m+64-4\left(10m^2-m-2\right)}{\left(2m-1\right)^2}=16\)
=>\(-36m^2+36m+72=16\left(4m^2-4m+1\right)\)
=>\(-36m^2+36m+72=64m^2-64m+16\)
=>\(-100m^2+100m+56=0\)
=>\(\left[{}\begin{matrix}m=\dfrac{7}{5}\left(nhận\right)\\m=-\dfrac{2}{5}\left(nhận\right)\end{matrix}\right.\)
`a)` Phương trình hoành độ của `(P)` và `(d)` là:
`x^2=(2m+2)x-m-2m`
`<=>x^2-2(m+1)x+3m=0` `(1)`
`(P)` cắt `(d)` tại `2` điểm `A,B<=>` Ptr `(1)` có `2` nghiệm phân biệt
`=>\Delta' > 0`
`<=>(m+1)^2-3m > 0`
`<=>m^2+2m+1-3m > 0`
`<=>m^2-m+1 > 0` (LĐ `AA m`)
`=>` Áp dụng Viét có: `{(x_1+x_2=-b/a=2m+2),(x_1.x_2=c/a=3m):}`
Ta có: `{(2x_1+x_2=5),(x_1+x_2=2m+2):}`
`<=>{(x_1=3-2m),(3-2m+x_2=2m+2):}`
`<=>{(x_1=3-2m),(x_2=4m-1):}`
Thay vào `x_1.x_2=3m`
`=>(3-2m)(4m-1)=3m`
`<=>12m-3-8m^2+2m=3m`
`<=>8m^2-11m+3=0`
`<=>(m-1)(8m-3)=0<=>[(m=1),(m=3/8):}`
a) Lập phương trình hoành độ giao điểm:
x2 = mx + 3
<=> x2 - mx - 3 = 0
Tọa độ (P) và (d) khi m = 2:
<=> x2 - 2x - 3 = 0
<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)
Tọa độ (P) và (d): A(3; 9) và B(-1; 1)
b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)
<=> (-m)2 - 4.1(-3) > 0
<=> m2 + 12 > 0 \(\forall m\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)
<=> 2x2 + 2x1 = 3x1x2
<=> 2(x2 + x1) = 3x1x2
Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)
<=> 2m = 3(-3)
<=> 2m = -9
<=> m = -9/2
a: Khi m=-2 thì y=-2x+1-(-2)=-2x+1+2=-2x+3
PTHĐGĐ là:
x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
=>y=9 hoặc y=1
b: PTHĐGĐ là:
x^2+2x+m-1=0
\(\Delta=2^2-4\left(m-1\right)=4-4m+4=-4m+8\)
Để phương trình có hai nghiệm thì -4m+8>=0
=>m<=2
x1^2+x2^2=x1*x2+8
=>(x1+x2)^2-2x1x2-x1x2=8
=>(-2)^2-3(m-1)=8
=>4-3m+3=8
=>7-3m=8
=>3m=-1
=>m=-1/3
a: Thay x=1 và y=-9 vào (d), ta được:
\(3m\cdot1+1-m^2=-9\)
=>\(-m^2+3m+10=0\)
=>\(m^2-3m-10=0\)
=>(m-5)(m+2)=0
=>\(\left[{}\begin{matrix}m-5=0\\m+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=5\\m=-2\end{matrix}\right.\)
b: Phương trình hoành độ giao điểm là:
\(x^2=3mx+1-m^2\)
=>\(x^2-3mx+m^2-1=0\)
\(\text{Δ}=\left(-3m\right)^2-4\left(m^2-1\right)=9m^2-4m^2+4=5m^2+4>0\forall m\)
=>(P) luôn cắt (d) tại hai điểm phân biệt
Theo Vi-et, ta có;
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=3m\\x_1x_2=\dfrac{c}{a}=m^2-1\end{matrix}\right.\)
\(x_1+x_2=2x_1x_2\)
=>\(2\left(m^2-1\right)=3m\)
=>\(2m^2-3m-2=0\)
=>(m-2)(2m+1)=0
=>\(\left[{}\begin{matrix}m-2=0\\2m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{2}\end{matrix}\right.\)