Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
Vậy: (d1): y=3x+b
Thay x=-2 vào (P), ta được:
\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)
Thay x=-2 và y=2 vào (d1), ta được:
\(3\cdot\left(-2\right)+b=2\)
\(\Leftrightarrow b=8\)(thỏa ĐK)
Vậy: (d1): y=3x+8
để \(\left(d1\right)\) sogn song với \(\left(d\right)\)
\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)
để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)
\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\)
=>\(\left(d1\right):y=3x+8\)
a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=-2x+b\)
Vì (d) cắt trục hoành tại điểm có hoành độ = 1
\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)
\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)
b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)
\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)
\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)
1. ta có pt đường thẳng (d) có dạng y=ax+b
vì phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2
=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)
=>x=-12
thay x=-12 vào pt (P) ta được: y=(-12)^2=144
thay x=-12,y=144, a=1 vòa pt (d) ta có:
144=-12+b=>b=156
=>pt (d) dạng y=x+156
2. pt (d) có dạng y=ax+b
vì phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1
=> a.a'=-1<=>a.1=-1=>a=-1
vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9
=>y=9=>x=+-3
với x=3,y=9,a=-1 thay vào pt(d) ta được:
9=-3+b=>b=12=>pt(d): y=-x+12
với x=-3,y=9,a=-1 thay vào pt (d)
=>9=3+b=>b=6=>pt(d) dạng: y=x+6
Gọi (d'): y = ax + b
Do (d') // (d) nên a = -1/2
⇒ (d'): y = -x/2 + b
Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:
-3/2 + b = 0
⇔ b = 3/2
Vậy (d'): y = -x/2 + 3/2
d' // d ⇒ phương trình đường thẳng d' có dạng y = x + a (a khác m)
Gọi d' cắt (p) tại điểm A ⇒ yA = -4 ⇒ \(y_A=\dfrac{-x^2_A}{4}=-4\) ⇒ \(-x^2_A=-16\) ⇒ \(x^2_A=16\) ⇒ \(x_A=4;-4\)
+ Với A(4; -4) ; A ∈∈ d' => -4 = 4 + a=> a = - 8 => (d') có dạng : y = x -8
+ Với A(-4; -4); A ∈∈ d' => -4 = -4 + a => a = 0 => (d') có dạng : y = x
a: Thay x=1 vào (P), ta được:
y=1^2=1
Thay x=1 và y=1 vào (d), ta được:
m+n=1
=>m=1-n
PTHĐGĐ là:
x^2-mx-n=0
=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0
Δ=(n-1)^2-4*(-n)
=n^2-2n+1+4n=(n+1)^2>=0
Để (P) tiếp xúc (d) thì n+1=0
=>n=-1
b: n=-1 nên (d): y=2x-1
(d1)//(d) nên (d1): y=2x+b
Thay x=2 vào y=x^2, ta được:
y=2^2=4
PTHĐGĐ là:
x^2-2x-b=0
Δ=(-2)^2-4*1*(-b)=4b+4
Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0
=>b>-1
c) Do d' // d nên phương trình của d' có dạng: y = -x + b (b ≠ 2)
Gọi A là giao điểm của d' và (P). A có hoành độ -1 ⇒ tung độ của A là 1Do A (-1; 1) nên tọa độ của A thỏa mãn phương trình đường thẳng d'
⇒ 1 = -(-1) + b ⇒ b = 0
⇒ Phương trình đường thẳng d' là y = -x.
Giả sử \(\left(d'\right):y=ax+b\)
\(\left(d'\right)//\left(d\right)\)
\(\Rightarrow\) phương trình : \(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b\ne-1\end{matrix}\right.\)
\(\Rightarrow y=-x+b\)
cắt (P)tại diểm có hoành độ =4
\(\Rightarrow x=4\in\left(P\right)\\ \Leftrightarrow y=\left(\dfrac{1}{4}.4\right)^2=1\)Vậy phương trình \(\left(d'\right)\) đi qua điểm có tọa độ \(\left(4;1\right)\)\(\Rightarrow4=-1+b\\ \Leftrightarrow b=5\)Vậy pt là : \(y=-x+5\)