K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2023

Giả sử \(\left(d'\right):y=ax+b\)

\(\left(d'\right)//\left(d\right)\)

\(\Rightarrow\) phương trình : \(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b\ne-1\end{matrix}\right.\)

\(\Rightarrow y=-x+b\)

cắt (P)tại diểm có hoành độ =4

\(\Rightarrow x=4\in\left(P\right)\\ \Leftrightarrow y=\left(\dfrac{1}{4}.4\right)^2=1\)Vậy phương trình \(\left(d'\right)\) đi qua điểm có tọa độ \(\left(4;1\right)\)\(\Rightarrow4=-1+b\\ \Leftrightarrow b=5\)Vậy pt là : \(y=-x+5\) 

Vì (d1)//(d) nên \(\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

Vậy: (d1): y=3x+b

Thay x=-2 vào (P), ta được:

\(y=\dfrac{1}{2}\cdot\left(-2\right)^2=\dfrac{1}{2}\cdot4=2\)

Thay x=-2 và y=2 vào (d1), ta được:

\(3\cdot\left(-2\right)+b=2\)

\(\Leftrightarrow b=8\)(thỏa ĐK)

Vậy: (d1): y=3x+8

30 tháng 6 2021

để \(\left(d1\right)\) sogn song với \(\left(d\right)\)

\(< =>\left\{{}\begin{matrix}a=3\\b\ne-4\end{matrix}\right.\)

để (d1) cắt (P) tại A có hoành độ -2\(=>x=-2\)

\(=>\dfrac{1}{2}x^2=3x+b< =>\dfrac{1}{2}\left(-2\right)^2=3\left(-2\right)+b=>b=8\left(tm\right)\) 

=>\(\left(d1\right):y=3x+8\)

8 tháng 7 2021

a) Vì (d) song song với đường thẳng \(y=-2x+2003\Rightarrow\left\{{}\begin{matrix}a=-2\\b\ne2003\end{matrix}\right.\)

\(\Rightarrow\left(d\right):y=-2x+b\)

Vì (d) cắt trục hoành tại điểm có hoành độ = 1

\(\Rightarrow\) tọa độ điểm đó là \(\left(1;0\right)\)

\(\Rightarrow1=b\Rightarrow\left(d\right):y=-2x+1\)

b) pt hoành độ giao điểm: \(-\dfrac{1}{2}x^2=-2x+2\Rightarrow\dfrac{1}{2}x^2-2x+2=0\)

\(\Rightarrow x^2-4x+4=0\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\Rightarrow y=-\dfrac{1}{2}.2^2=-2\)

\(\Rightarrow\) tọa độ giao điểm là \(\left(2;-2\right)\)

19 tháng 5 2021

1. ta có pt đường thẳng (d) có dạng y=ax+b

vì  phương trình đường thẳng (d) song song với đường thẳng (∆) y=x+2 

=>\(\left\{{}\begin{matrix}a=1\\b\ne2\end{matrix}\right.\)

vì  phương trình đường thẳng (d) cắt (P) y=x² tại điểm có hoành độ bằng -12( cái kia bạn viết là -12 à?)

=>x=-12

thay x=-12 vào pt (P) ta được: y=(-12)^2=144

thay x=-12,y=144, a=1 vòa pt (d) ta có:

144=-12+b=>b=156

=>pt (d) dạng y=x+156

 

 

 

19 tháng 5 2021

2. pt (d) có dạng y=ax+b

vì  phương trình đường thẳng (d) vuông góc với đường thẳng (∆) y=x+1

=> a.a'=-1<=>a.1=-1=>a=-1

vì phương trình đường thẳng (d) cắt (P) y=x² tại điểm có tung độ bằng 9 

=>y=9=>x=+-3

với x=3,y=9,a=-1 thay vào pt(d) ta được:

9=-3+b=>b=12=>pt(d): y=-x+12

với x=-3,y=9,a=-1 thay vào pt (d) 

=>9=3+b=>b=6=>pt(d) dạng: y=x+6

 

 

8 tháng 11 2023

Gọi (d'): y = ax + b

Do (d') // (d) nên a = -1/2

⇒ (d'): y = -x/2 + b

Do (d') cắt trục hoành tại điểm có hoành độ là 3 nên thay x = 3; y = 0 vào (d') ta có:

-3/2 + b = 0

⇔ b = 3/2

Vậy (d'): y = -x/2 + 3/2

8 tháng 2 2023

d' // d ⇒ phương trình đường thẳng d' có dạng y = x + a (a khác m)

Gọi d' cắt (p) tại điểm A ⇒ yA = -4 ⇒ \(y_A=\dfrac{-x^2_A}{4}=-4\) ⇒ \(-x^2_A=-16\) ⇒ \(x^2_A=16\) ⇒ \(x_A=4;-4\)

+ Với A(4; -4) ; A ∈∈ d' => -4 = 4 + a=> a = - 8 => (d') có dạng : y = x -8

+ Với A(-4; -4); A  ∈∈ d' => -4 = -4 + a => a = 0 => (d') có dạng : y = x 

 

a: Thay x=1 vào (P), ta được:

y=1^2=1

Thay x=1 và y=1 vào (d), ta được:

m+n=1

=>m=1-n

PTHĐGĐ là:

x^2-mx-n=0

=>x^2-x(1-n)-n=0
=>x^2+x(n-1)-n=0

Δ=(n-1)^2-4*(-n)

=n^2-2n+1+4n=(n+1)^2>=0

Để (P) tiếp xúc (d) thì n+1=0

=>n=-1

b: n=-1 nên (d): y=2x-1

(d1)//(d) nên (d1): y=2x+b

Thay x=2 vào y=x^2, ta được:

y=2^2=4

PTHĐGĐ là:

x^2-2x-b=0

Δ=(-2)^2-4*1*(-b)=4b+4

Để (d1) cắt (P) tại 2 điểm pb thì 4b+4>0

=>b>-1

2 tháng 2 2017

c) Do d' // d nên phương trình của d' có dạng: y = -x + b (b ≠ 2)

Gọi A là giao điểm của d' và (P). A có hoành độ -1 ⇒ tung độ của A là 1

Do A (-1; 1) nên tọa độ của A thỏa mãn phương trình đường thẳng d'

⇒ 1 = -(-1) + b ⇒ b = 0

⇒ Phương trình đường thẳng d' là y = -x.