Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}\)với \(x=16\Rightarrow\sqrt{x}=4\)
\(=\frac{2.4+1}{16+4+1}=\frac{9}{21}=\frac{3}{7}\)
Vậy với x = 16 thì A nhận giá trị là 3/7
b, Sửa rút gọn biểu thức B nhé
Với \(x\ge0;x\ne1\)
\(B=\left(\frac{1}{\sqrt{x}-1}-\frac{\sqrt{x}}{1-x}\right):\left(\frac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)
\(=\left(\frac{1}{\sqrt{x}-1}+\frac{\sqrt{x}}{\left(\sqrt{x}\pm1\right)}\right):\left(\frac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\right)\)
\(=\frac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}\pm1\right)}.\frac{\sqrt{x}-1}{1}=\frac{2\sqrt{x}}{\sqrt{x}+1}\)
c, Ta có : \(M=\frac{A}{B}\)hay \(M=\frac{\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}}{\frac{2\sqrt{x}}{\sqrt{x}+1}}\)
\(=\frac{2\sqrt{x}+1}{x+\sqrt{x}+1}.\frac{\sqrt{x}+1}{2\sqrt{x}}\)
\(=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{2\sqrt{x}\left(x+\sqrt{x}+1\right)}\)
Gọi x1,x2x1,x2 là nghiệm của x2−mx−2=0(1)x2−mx−2=0(1)
→{x1+x2=mx1x2=−2→{x1+x2=mx1x2=−2
→⎧⎪ ⎪⎨⎪ ⎪⎩1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12→{1x1+1x2=x1+x2x1x2=−m21x1.1x2=−12
→1x1,1x2→1x1,1x2 là nghiệm của phương trình
x2+m2x−12=0
\(x^2+x-a=0\)
\(x\left(x+1\right)=a\)
ta có snt thì không chia hết cho số nào ngoài 1 và chính nó
vậy a là số nguyên tố thì \(\orbr{\begin{cases}x=1\\x+1=1\end{cases}\orbr{\begin{cases}x=1\\x=0\end{cases}}}\)
\(TH1:x=0\)
\(0.1=a\)
\(0=a\left(KTM\right)\)
\(TH2:x=1\)
\(1.\left(1+1\right)=a\)
\(2=a\left(TM\right)\)
vậy chỉ có nghiệm x duy nhất là x=1
a) Với m = 1, ta có:
⇒ (d): y = x - 1/2 + 2 = x + 3/2
Phương trình hoành độ giao điểm của (P) và (d):
1/2 x² = x + 3/2
⇔ x² = 2x + 3
⇔ x² - 2x - 3 = 0
Do a - b + c = 1 - (-2) + 3 = 0 nên phương trình có hai nghiệm:
x₁ = -1; x₂ = -c/a = 3
x₁ = -1 ⇒ y = 1/2 . (-1)² = 1/2
⇒ A(-1; 1/2)
x₂ = 3 ⇒ y = 1/2 . 3² = 9/2
⇒ B(3; 9/2)
b) Phương trình hoành độ giao điểm của (P) và (d):
1/2 x² = mx - 1/2 m² + m + 1
⇔ x² = 2mx - m² + 2m + 2
⇔ x² - 2mx + m² - 2m - 2
∆' = (-m)² - 1.(m² - 2m - 2)
= m² - m² + 2m + 2
= 2m + 2
Để phương trình có hai nghiệm phân biệt thì ∆' > 0
⇔ 2m + 2 > 0
⇔ 2m > -2
⇔ m > -1
Theo hệ thức Vi-ét, ta có:
x₁ + x₂ = 2m
x₁x₂ = m² - 2m - 2
Ta có:
|x₁ - x₂| = (x₁ - x₂)² = [(x₁ + x₂)² - 4x₁x₂]
= [(2m)² - 4.(m² - 2m - 2)]
= (4m² - 4m² + 8m + 4)
= 8m + 4
= 2(2m + 2)
Mà |x₁ - x₂| = 2
⇔ 2(2m + 2) = 2
⇔ (2m + 2) = 1
⇔ 2m + 2 = 1
⇔ 2m = -1
⇔ m = -1/2 (nhận)
Vậy m = -1/2 thì phương trình có hai nghiệm phân biệt thỏa mãn |x₁ - x₂| = 2