K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

PTHĐGĐ là:

x^2-mx-2=0

Vì a*c<0 nên (d) luôn cắt (P) tại hai điểm phân biệt

x1^2=4x2^2

=>x1=2x2 hoặc x1=-2x2

TH1: x1=2x2 và x1+x2=m

=>x2=m/3; x1=2/3m

x1*x2=-2

=>2/9m^2=-2

=>m^2=-2:2/9=-9(loại)

TH2: x1=-2x2 và x1+x2=m

=>-x2=m và x1=-2x2

=>x2=-m và x1=2m

x1*x2=-2

=>-2m^2=-2

=>m^2=1

=>m=1 hoặc m=-1

Phương trình hoành độ giao điểm là:

\(x^2-mx+2m-4=0\)

\(\Delta=\left(-m\right)^2-4\left(2m-4\right)\)

\(=m^2-8m+16=\left(m-4\right)^2\)

Để (P) cắt (d) tại hai điểm phân biệt thì m-4<>0

hay m<>4

Ta có: \(x_1^2+x_2^2\)

\(=\left(x_1+x_2\right)^2-2x_1x_2\)

\(=m^2-2\left(2m-4\right)\)

\(=m^2-4m+8\)

\(=\left(m-2\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi m=2

a: PTHĐGĐ là:

x^2+mx-m-2=0(1)

Khi m=2 thì (1) sẽ là

x^2+2x-2-2=0

=>x^2+2x-4=0

=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)

b: Δ=m^2-4(-m-2)

=m^2+4m+8

=(m+2)^2+4>0 với mọi x

=>(d) luôn cắt (P) tại hai điểm phân biệtx

x1^2+x2^2=7

=>(x1+x2)^2-2x1x2=7

=>(-m)^2-2(-m-2)=7

=>m^2+2m+4-7=0

=>m^2+2m-3=0

=>m=-3 hoặc m=1

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

5 tháng 6 2021

undefined

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)

26 tháng 7 2021

a) Đường thẳng (d) đi qua A(1; 0) => x = 1 và y = 0

DO đó: 0 = m - 3 <=> m = 3

b) pt hoành độ giao điểm giữa (P) và (d) là:

 x2 = mx - 3 <=> x2 - mx + 3 = 0 (1)

\(\Delta\)= (-m)2 - 3.4 = m2 - 12

Để (P) cắt (d) tại 2 điểm pb <=>  pt (1) có 2 nghiệm pb 

<=> \(\Delta\)> 0 <=> m2 - 12 > 0 <=> \(\orbr{\begin{cases}m>2\sqrt{3}\\m< -2\sqrt{3}\end{cases}}\)

Theo hệ thức viet, ta có: \(\hept{\begin{cases}x_1+x_2=m\\x_1x_2=3\end{cases}}\)

Theo bài ra, ta có: |x1 - x2| = 2

<=> x12 - 2x1x2 + x22 = 4

<=> (x1 + x2)2 - 4x1x2 = 4

<=> m2 - 4.3 = 4

<=> m2 - 16 = 0

<=> (m  - 4)(m + 4) = 0

<=> \(\orbr{\begin{cases}m=4\\m=-4\end{cases}}\)(tm)

AH
Akai Haruma
Giáo viên
30 tháng 11 2021

Lời giải:
a. Để $(d)$ đi qua $A(1;0)$ thì:
$y_A=2x_A-m+3$

$\Leftrightarrow 0=2.1-m+3=5-m$

$\Leftrightarrow m=5$

b.

PT hoành độ giao điểm:

$x^2-(2x-m+3)=0$

$\Leftrightarrow x^2-2x+m-3=0(*)$

Để $(P), (d)$ cắt nhau tại 2 điểm pb thì $(*)$ phải có 2 nghiệm pb $x_1,x_2$

Điều này xảy ra khi:

$\Delta'=1-(m-3)>0\Leftrightarrow 4-m>0\Leftrightarrow m< 4$

Áp dụng định lý Viet: $x_1+x_2=2$ và $x_1x_2=m-3$

Khi đó:
$x_1^2-2x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-(x_1+x_2)x_2+x_1x_2=-12$

$\Leftrightarrow x_1^2-x_2^2=-12$

$\Leftrightarrow (x_1-x_2)(x_1+x_2)=-12$
$\Leftrightarrow x_1-x_2=-6$

$\Rightarrow x_1=-2; x_2=4$

$m-3=x_1x_2=(-2).4=-8$

$\Leftrightarrow m=-5$ (tm)