K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2021

1.

\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)

\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)

Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:

\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)

2.

\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)

Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):

\(x+c=x^2\)

\(\Leftrightarrow x^2-x-c=0\)

\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)

\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)

6 tháng 2 2021

- Thay x = -1 và x = 2 vào hàm số ( P ) ta được :

\(\left[{}\begin{matrix}y=1\\y=4\end{matrix}\right.\)

=> Đường thẳng AB đi qua 2 điểm ( -1; 1 ) ; ( 2 ; 4 )

- Gọi đường thẳng AB có dạng  y = ax + b

- Thay hai điểm trên lần lượt vào phương trình đường thẳng ta được :

\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\)

 \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

Vậy phương trình đường thẳng AB có dạng : y = x + 2 .

Thay x=2 vào (P), ta được:

\(y=x^2=2^2=4\)

Thay x=-3 vào (P), ta được:

\(y=\left(-3\right)^2=9\)

Vậy: A(2;4) và B(-3;9)

Gọi phương trình đường thẳng AB là (d): y=ax+b

Thay x=2 và y=4 vào (d), ta được:

\(2a+b=4\)(1)

Thay x=-3 và y=9 vào (d), ta được:

\(-3a+b=9\)(2)

Từ (1) và (2) ta lập được hệ phương trình:

\(\left\{{}\begin{matrix}2a+b=4\\-3a+b=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5a=-5\\2a+b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b-2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=6\end{matrix}\right.\)

Vậy: y=-x+6

20 tháng 5 2015

hết hạn khỏi giải nhé mỏ vịt đi bơi đi

4 tháng 2 2020

Bài 3:

Đặt \(a=m^2-4\)

\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến

\(\Leftrightarrow a< 0\)

\(\Leftrightarrow m^2-4< 0\)

\(\Leftrightarrow m^2< 4\)

\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)

\(\Leftrightarrow-2< m< 2\)

Vậy với \(-2< m< 2\)thì hàm số nghịch biến

\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)

\(\Leftrightarrow a>0\)

\(\Leftrightarrow m^2-4>0\)

\(\Leftrightarrow m^2>4\)

\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)

Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)

NV
23 tháng 2 2021

Ta có \(M\left(2;-1\right)\)

Gọi phương trình đường thẳng d qua M có dạng: \(y=ax+b\)

\(\Rightarrow-1=2a+b\Rightarrow b=-2a-1\)

\(\Rightarrow y=ax-2a-1\)

Để d cắt 2 trục tọa độ \(\Rightarrow a\ne\left\{0;-\dfrac{1}{2}\right\}\)

\(\Rightarrow A\left(\dfrac{2a+1}{a};0\right)\) ; \(B\left(0;-2a-1\right)\) \(\Rightarrow OA=\left|x_A\right|=\left|\dfrac{2a+1}{a}\right|\) ; \(OB=\left|y_B\right|=\left|2a+1\right|\)

Ta có: \(S_{OMA}=\dfrac{1}{2}\left|y_M\right|.OA=\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|\)

\(S_{OMB}=\dfrac{1}{2}\left|x_M\right|.OB=\left|2a+1\right|\)

\(\Rightarrow\dfrac{1}{2}\left|\dfrac{2a+1}{a}\right|=\left|2a+1\right|\Leftrightarrow\dfrac{1}{2\left|a\right|}=1\Rightarrow\left[{}\begin{matrix}a=\dfrac{1}{2}\\a=-\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

Phương trình: \(y=\dfrac{1}{2}x-2\)

12 tháng 9 2021

vì sao a lại khác -1/2 vậy ạ