K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 10 2020

Pt hoành độ giao điểm: \(x^2-2mx+m=2x-1\)

\(\Leftrightarrow x^2-2\left(m+1\right)x+m+1=0\)

\(\Delta'=\left(m+1\right)^2-\left(m+1\right)>0\Leftrightarrow\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\) (1)

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m+1\end{matrix}\right.\)

\(x_1^2+x_2^2\le12\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\le12\)

\(\Leftrightarrow4\left(m+1\right)^2-2\left(m+1\right)-12\le0\)

\(\Leftrightarrow2m^2+3m-5\le0\Rightarrow-\frac{5}{2}\le m\le1\) (2)

Kết hợp (1); (2) \(\Rightarrow\left[{}\begin{matrix}-\frac{5}{2}\le m< -1\\0< m\le1\end{matrix}\right.\)

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2-2x+4=2mx-m^2\)

=>\(x^2-2x+4-2mx+m^2=0\)

=>\(x^2-x\left(2m+2\right)+m^2+4=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(m^2+4\right)\)

\(=4m^2+8m+4-4m^2-16=8m-12\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

=>8m-12>0

=>8m>12

=>\(m>\dfrac{3}{2}\)

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2m-2\right)}{1}=2m+2\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4}{1}=m^2+4\end{matrix}\right.\)

\(x_1^2+2\left(m+1\right)x_2=3m^2+16\)

=>\(x_1^2+x_2\left(x_1+x_2\right)=3m^2+12+4\)

=>\(x_1^2+x_1\cdot x_2+x_2^2=3x_1x_2+4\)

=>\(x_1^2-2x_1x_2+x_2^2=4\)

=>\(\left(x_1-x_2\right)^2=4\)

=>\(\left(x_1+x_2\right)^2-4x_1x_2=4\)

=>\(\left(2m+2\right)^2-4\left(m^2+4\right)=4\)

=>\(4m^2+8m+4-4m^2-16=4\)

=>8m-12=4

=>8m=16

=>m=2(nhận)

30 tháng 11 2023

Cắt đồ thị nào vậy bạn?

2 tháng 12 2023

đồ thị \(y=x^2+2mx+4\) nha 

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+mx+\left(m+1\right)^2=-x^2-\left(m+2\right)x-2\left(m+1\right)\)

=>\(x^2+mx+\left(m+1\right)^2+x^2+\left(m+2\right)x+2\left(m+1\right)=0\)

=>\(2x^2+\left(2m+2\right)x+2\left(m+1\right)+\left(m+1\right)^2=0\)

=>\(2x^2+\left(2m+2\right)x+\left(m^2+4m+3\right)=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\cdot2\cdot\left(m^2+4m+3\right)\)

\(=4m^2+8m+4-8m^2-32m-24\)

\(=-4m^2-24m-20\)

\(=-4\left(m^2+6m+5\right)=-4\left(m+1\right)\left(m+5\right)\)

Để (P1) cắt (P2) tại hai điểm phân biệt thì Δ>0

=>\(-4\left(m+1\right)\left(m+5\right)>0\)

=>\(\left(m+1\right)\left(m+5\right)< 0\)

TH1: \(\left\{{}\begin{matrix}m+1>0\\m+5< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\)

=>Loại

TH2: \(\left\{{}\begin{matrix}m+1< 0\\m+5>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m< -1\\m>-5\end{matrix}\right.\)

=>-5<m<-1

Theo Vi-et, ta có: \(x_1+x_2=\dfrac{-\left(2m+2\right)}{2}=-m-1;x_1\cdot x_2=\dfrac{c}{a}=\dfrac{m^2+4m+3}{2}\)

\(P=\left|x_1x_2-3\left(x_1+x_2\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}-3\left(-m-1\right)\right|\)

\(=\left|\dfrac{m^2+4m+3}{2}+3m+3\right|\)

\(=\dfrac{\left|m^2+4m+3+6m+6\right|}{2}=\dfrac{\left|m^2+10m+9\right|}{2}\)

Biểu thức này không có giá trị lớn nhất nha bạn

2 tháng 12 2023

vậy biểu thức này có tìm GTNN được không ạ?

nếu tìm được thì mong bạn giải giùm cho mình được không ạ???

30 tháng 11 2023

Phương trình hoành độ giao điểm là:

\(x^2+x+1=-x^2+2x+4\)

=>\(x^2+x+1+x^2-2x-4=0\)

=>\(2x^2-x-3=0\)(1)

a=2; b=-1;c=-3

\(a\cdot c=2\cdot\left(-3\right)=-6< 0\)

=>Phương trình (1) có hai nghiệm phân biệt

Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{2}=\dfrac{1}{2}\\x_1\cdot x_2=\dfrac{c}{a}=-\dfrac{3}{2}\end{matrix}\right.\)

\(P=x_1^3+x_2^3\)

\(=\left(x_1+x_2\right)^3-3\cdot x_1\cdot x_2\left(x_1+x_2\right)\)

\(=\left(\dfrac{1}{2}\right)^3-3\cdot\dfrac{-3}{2}\cdot\dfrac{1}{2}\)

\(=\dfrac{1}{8}+\dfrac{9}{4}=\dfrac{1}{8}+\dfrac{18}{8}=\dfrac{19}{8}\)

13 tháng 12 2020

giúp mik với ạ

13 tháng 12 2020

Mà GTLN hay GTNN vậy

11 tháng 3 2021

Để pt có 2 nghiệm phân biệt thì \(\Delta'=m^2-\left(m+2\right)>0\Leftrightarrow\left(m+1\right)\left(m-2\right)>0\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -1\end{matrix}\right.\). (1)

Khi đó theo hệ thức Viète ta có \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m+2\end{matrix}\right.\).

Ta có \(x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\left(2m\right)^3-3.2m.\left(m+2\right)=8m^3-6m^2-12m\).

Do đó \(8m^3-6m^2-12m\le16\Leftrightarrow\left(m-2\right)\left(8m^2+10m+8\right)\le0\Leftrightarrow m\le2\)

(do \(8m^2+10m+8=2\left(2m+\dfrac{5}{4}\right)^2+\dfrac{39}{8}>0\forall m\)).

Kết hợp vs (1) ta có m < -1.