Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét pt hoành độ gđ của (P) và (d) có:
\(2x^2=mx+1\)
\(\Leftrightarrow2x^2-mx-1=0\) (1)
Để (P) và (d) tiếp xúc <=> Pt (1) có nghiệm kép <=>\(\Delta=0\)<=> \(m^2-4.2\left(-1\right)=0\) <=> \(m^2+8=0\) (vô nghiệm)
Vậy không tồn tại m để (d) và (P) tiếp xúc
Ptr hoành độ của `(P)` và `(d)` là:
`2x^2=mx-2`
`<=>2x^2-mx+2=0` `(1)`
Ptr `(1)` có: `\Delta=(-m)^2-4.2.2=m^2-16`
`(d)` tiếp xúc với `(P)<=>` Ptr `(1)` có nghiệm kép
`<=>\Delta=0<=>m^2-16=0<=>m=+-4`
`@m=4=>2x^2-4x+2=0<=>x=1=>y=2.1^2=2`
`=>` Giao điểm là `(1;2)`
`@m=-4=>2x^2+4x+2=0<=>x=-1=>y=2.(-1)=2`
`=>` Giao điểm là `(-1;2)`
a) vẽ bạn tự vẽ nha
b) Xét pt hoành độ giao điểm chung của (d) và (P) ta có:
\(\frac{1}{4}x^2=x+m\)
\(\Leftrightarrow x^2-4x-4m=0\left(1\right)\)
\(\Delta^,=4+4m\)
Để (d) tiếp xúc với (P) \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow4+4m=0\)
\(\Leftrightarrow m=-1\)
Thay m=-1 vào pt (1) ta được :
\(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\)
\(\Rightarrow y=\frac{1}{4}.2^2=1\)
Gọi tọa độ tiếp điểm của (d) tiếp xúc với (P) là A(x,y)
=> tọa độ tiếp điểm là \(A\left(2;1\right)\)
1. Ta có đồ thị :
2. - Xét phương trình hoành độ giao điểm : \(x^2-2x-m=0\)
Có : \(\Delta^,=\left(-1\right)^2-\left(-m\right).1=m+1\)
- Để ( P ) tiếp xúc với d \(\Leftrightarrow\Delta^,=0\)
\(\Leftrightarrow m=-1\)
3. Có phương trình hoành độ giao điểm :
\(x^2-2x-\left(-1\right)=x^2-2x+1=\left(x-1\right)^2\)
\(\Rightarrow x=1\)
\(\Rightarrow y=1\)
Vậy tọa độ tiếp điểm \(I\left(1;1\right)\)
Phương trình hoành độ giao điểm là:
\(-x^2=2mx+3-m\)
\(\Leftrightarrow-x^2-2mx-3+m=0\)
\(\Delta=4m^2+4\cdot1\cdot\left(m-3\right)=4m^2+4m-12=4m^2+4m+1-13\)
\(\Leftrightarrow\Delta=\left(2m+1\right)^2-13\)
Để (P) tiếp xúc với (d) thì \(\left(2m+1\right)^2=13\)
\(\Leftrightarrow\left[{}\begin{matrix}2m+1=\sqrt{13}\\2m+1=-\sqrt{13}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{\sqrt{13}-1}{2}\\m=\dfrac{-\sqrt{13}-1}{2}\end{matrix}\right.\)
Phương trình hoành độ giao điểm là:
\(x^2-2x-m^2-m+3=0\)
\(\Delta=\left(-2\right)^2-4\cdot1\cdot\left(-m^2-m+3\right)\)
\(=4+4m^2+4m-12=4m^2+4m-8\)
\(=4\left(m+2\right)\left(m-1\right)\)
Để (P) tiếp xúc với (d) thì (m+2)(m-1)=0
=>m=-2(loại) hoặc m=1(nhận)
PTHĐGĐ là:
x^2-2x+m-1=0
Δ=(-2)^2-4(m-1)=4-4m+4=-4m+8
a: Để (P) và (d) tiếp xúc thì -4m+8=0
=>m=2
=>x^2-2x+1=0
=>x=1
=>y=1
b: Để (P) cắt (d) thì -4m+8>0
=>m<2
gợi ý nhé
để P và d tiếp xúc nhau thì pt hoành độ : mx2-4x+5=0 phải có nghiệm duy nhất ( tức là đenta phải bằng 0)
sau khi tìm ra m thay vào pt đã cho thì bấm máy tính cho ra nghiệm cần tìm rồi thay x đã tìm đc vào d hoặc P đều đc