Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì P>3 nên p có dạng: 3k+1;3k+2 (k E N sao)
=> p^2 :3(dư 1)
=> p^2+2018 chia hết cho 3 và>3
nên là hợp số
2, Vì n ko chia hết cho 3 và>3
nên n^2 chia 3 dư 1
=> n^2-1 chia hết cho 3 và >3 là hợp số nên ko đồng thời là số nguyên tố
3, Ta có:
P>3
p là số nguyên tố=>8p^2 không chia hết cho 3
mà 8p^2-1 là số nguyên tố nên ko chia hết cho 3
Ta dễ nhận thấy rằng: 8p^2-1;8p^2;8p^2+1 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 3
mà 2 số trước ko chia hết cho 3
nên 8p^2+1 chia hết cho 3 và >3 nên là hợp số (ĐPCM)
4, Vì p>3 nên p lẻ
=> p+1 chẵn chia hết cho 2 và>2
p+2 là số nguyên tố nên p có dạng: 3k+2 (k E N sao)
=> p+1=3k+3 chia hết cho 3 và>3
từ các điều trên
=> p chia hết cho 2.3=6 (ĐPCM)
Vì p là số nguyên tố , p > 3
nên p = 3k + 1 hoặc p = 3q + 2 (k;q \(\inℕ^∗\) )
Với p = 3k + 1
thì 8p2 + 1 = 8.(3k + 1)2 + 1 = 8.(9k2 + 6k + 1) + 1
= 72k2 + 48k + 9 = 3(24k2 + 16k + 3) \(⋮3\)
=> 8p2 + 1 là hơp số (loại)
Với p = 3q + 2
8p2 + 1 = 8(3q + 2)2 + 1 = 72q2 + 96q + 33 \(⋮3\)
=> p = 3q + 2 (loại)
Vậy không tồn tại p để thỏa mãn điều kiện đề bài
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi