Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2p+1 là số nguyên tố
nên 2(2p+1) là hợp số
4p+2 là hợp số
=>4p+1 là hợp số
vì p là số nguyên tố lớn hơn 3 => p có 2 dạng: p = 3k + 1 hoặc p = 3k +2 ( k \(\in\)N* )
- nếu p = 3k + 1 => 2p + 1 = 2 ( 3k+1 ) + 1
= 6k + 2 +1
= 6k + 3 \(⋮\)3 và lớn hơn 3
=> 2p+1 là hợp số ( loại, vì trái với đề bài )
do đo: p = 3k + 2
=> 4p + 1 = 4 ( 3k + 2 ) + 1
= 12k + 8 +1
= 12k + 9 \(⋮\)3 và lớn hơn 3.
=> 4p+1 là hợp số.
vậy: 4p+1 là hợp số.
SANG NĂM MỚI MK CHÚC CÁC BẠN VUI VẺ. tk mk nha. đúng 100%.
Xét 3 số tự nhiên tiếp : \(4p\) , \(4p+1\) , \(4p+2\) . Trong ba số này ắt hẳn ta sẽ tìm được duy nhất một số chia hết cho 3 (1)
Ta xét :
+ Vì p là số nguyên tố ( p > 5 ) nên p không chia hết cho 3 . Do vậy 4p không chia hết cho 3 (2)
+ Vì 2p+1 là số nguyên tố và p > 5 nên \(2p+1>3\) . Suy ra \(2p+1\) không chia hết cho 3 . Mà \(4p+2=2\left(2p+1\right)\) => \(4p+2\) không chia hết cho 3 (3)
Từ (1) , (2) , (3) ta suy ra được \(4p+1\) chia hết cho 3 . Mà p > 5 =>\(4p+1>3\) không thể là số nguyên tố , hay nói cách khác \(4p+1\) là hợp số.
Vì p là số nguyên tố lớn hơn 3
=> p có dạng 3k+1; 3k+2 (k\(\inℕ^∗\))
Thay p=3k+1 vào 2p+1 ta có:
2p+1=2(3k+1)+1=6k+2+1=6k+3
Thấy \(\hept{\begin{cases}6k⋮3\\3⋮3\end{cases}\Rightarrow6k+3⋮3}\)
=> 2p+1 là hợp số (loại)
Thay p=3k+2 vào 2p+1 ta có:
2p+1=2(3k+2)+1=6k+5 là số nguyên tố (chọn)
Với p=3k+2 => 4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 2p+1 cũng là số nguyên tố thì 4p+1 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p không chia hết cho 3
TH1 : p chia cho 3 dư 1
=> p = 3k + 1 ( k thuộc N*)
=> 2p + 1 = 6k + 3 chia hết cho 3
=> 2p + 1 không phải số nguyên tố
=> loại
TH2 : p chia 3 dư 2
=> p = 3k + 2 (k thuộc N*)
=> 4p + 1 = 12k + 9 chia hết cho 3
=> 4p + 1 là hợp số
p là số nguyên tố lớn hơn 5 nên p có dạng 3k+1 hoặc 3k+2.
+Nếu p = 3k+1 thì $$ chia hết cho 3 => 2p+1 không phải số nguyên tố => loại
+Vậy p có dạng 3k+2
Khi đó $$ chia hết cho 3.
Vậy 4p+1 là hợp số,