Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BÀi 4 :VÌ p và 5 là 2 số nguyên tố cùng nhau nên p không chia hết cho 5
Ta có P8n+3P4n-4 = p4n(p4n+3) -4
Vì 1 số không chia hết cho 5 khi nâng lên lũy thừa 4n sẽ có số dư khi chia cho 5 là 1
( cách chứng minh là đồng dư hay tìm chữ số tận cùng )
suy ra : P4n(P4n+3) -4 đồng dư với 1\(\times\)(1+3) -4 = 0 ( mod3) hay A chia hết cho 5
Bài 5
Ta xét :
Nếu p =3 thì dễ thấy 4P+1=9 là hợp số (1)
Nếu p\(\ne\)3 ; vì 2p+1 là số nguyên tố nên p không thể chia 3 dư 1 ( vì nếu p chia 3 duw1 thì 2p+1 chia hết cho 3 và 2p+1 lớn hơn 3 nên sẽ là hợp số trái với đề bài)
suy ra p có dạng 3k+2 ; 4p+1=4(3k+2)+1=12k+9 chia hết cho 3 và 4p+1 lớn hơn 3 nên là 1 hợp số (2)
Từ (1) và (2) suy ra 4p+1 là hợp số
bt trên sẽ là (a4n)2 + 3 . a4n - 4 = (a4n)2 + 4. a4n - a4n -4 = ( a4n + 4)(a4n -1)
mặt khác vì a là số tự nhiên , a không chia hết cho 5
=> a4n = (a2n)2 là số chính phương chia 5 dư 1 hoặc 4 (vì scp chia 5 dư 0,1,4 - bạn có thể chứng minh = cách xét 1 số x nào đó có số dư cho 5 là 0,1,2,3,4 , đăt dạng của nó (VD như 5k+1 chẳng hạn ) rồi bp lên đc scp của nó để tìm số dư của scp đó cho 5 theo cách tổng quát nhất)
nếu a4n chia 5 dư 1 => a4n -1 chia hết cho 5 => bt chia hết cho 5
nếu a4n chia 5 dư 4 => a4n -4 chia hết cho 5 => bt chia hết cho 5
Vậy bt trên chia hết cho 5
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5
1)
+) a, b, c là các số nguyên tố lớn hơn 3
=> a, b, c sẽ có dạng 3k+1 hoặc 3k+2
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3
=> (a-b)(b-c)(c-a) chia hết cho 3 (1)
+) a,b,c là các số nguyên tố lớn hơn 3
=> a, b, c là các số lẻ và không chia hết cho 4
=> a,b, c sẽ có dang: 4k+1; 4k+3
=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4
th1: Cả 3 số chia hết cho 4
=> (a-b)(b-c)(c-a) chia hết cho 64 (2)
Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192 vì (64;3)=1
=> (a-b)(b-c)(c-a) chia hết cho 48
th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 32 (3)
Từ (1) , (3)
=> (a-b)(b-c)(c-a) chia hết cho 32.3=96 ( vì (3;32)=1)
=> (a-b)(b-c)(c-a) chia hết cho 48
Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2
=> (a-b)(b-c)(c-a) chia hết cho 16
Vì (16; 3)=1
=> (a-b)(b-c)(c-a) chia hết cho 16.3=48
Như vậy với a,b,c là số nguyên tố lớn hơn 3
thì (a-b)(b-c)(c-a) chia hết cho 48
Ta có:
p20 - 1=(p4 - 1)(p16 + p12 + p8 + p4 + 1)
do p là số nguyên tố lớn hơn 5⇒ p là 1 số lẻ
p2 + 1 và p2 - 1 là các số chẵn
p4 - 1 ⋮4
p20 - 1 ⇒4
vì p là số nguyên tố lớn hơn 5⇒ p là số không chia hết cho 5
p4 - 1 ⋮5
lập luận được p16 + p12 + P8 + p4 + 1 ⋮5
⇒ p20 - 1 chia hết cho 25
mà (4;25) = 1
⇒ \(p^{20}\) - 1 chia hết cho 100
Lời giải:
Với $p$ là số nguyên tố không chia hết cho $5$ thì $(p,5)=1$
Áp dụng định lý Fermat nhỏ ta có:
\(p^{5-1}\equiv 1\pmod 5\)
\(\Leftrightarrow p^4\equiv 1\pmod 5\)
\(\Rightarrow \left\{\begin{matrix} p^{4n}\equiv 1^n\equiv 1\pmod 5\\ p^{8n}\equiv 1^{2n}\equiv 1\pmod 5\end{matrix}\right.\)
\(\Rightarrow A=p^{8n}+23.p^{4n}+16\equiv 1+23.1+16\pmod 5\)
\(\Leftrightarrow A\equiv 40\equiv 0\pmod 5\)
Vậy $A$ chia hết cho $5$