cho p là số nguyên tố lớn hơn 3. CMR p^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2022

Ta có:

n là số nguyên tố lớn hơn 3

=> n không chia hết cho 3

=> n2 chia 3 dư 1

Mà 2012 chia 3 dư 2

=> n2 + 2012 chia 3 dư 3

=>n2+2012 chia hết cho 3

Hiển nhiên nó cũng lớn hơn 3 nên là hợp số

17 tháng 3 2022

vì ko lm đc

9 tháng 6 2015

p là số nguyên tố mà p > 13 nên p = 3k + 1 hoặc 3k + 2 (k \(\in\) N)

- Với p = 3k + 1 ta có \(\frac{\left(3k+1\right)^2-1}{24}=\frac{9k^2+1-1}{24}=\frac{9k^2}{24}=\frac{3.3k^2}{3.8}\)chia hết cho 3, là hợp số.

- Với p = 3k + 2 ta có \(\frac{\left(3k+2\right)^2-1}{24}=\frac{9k^2+4-1}{24}=\frac{9k^2+3}{24}=\frac{3.\left(3k^2+1\right)}{3.8}\) chia hết cho 3, là hợp số.

                       Vậy suy ra điều phải chứng minh.

5 tháng 6 2015

 ta có p^2-1/24

=(p-1)(p+1)/24

do p là số nguyên tố >13=>p-1 chẵn,p+1 chẵn

mà p-1+p+1=2p=>p-1 và p+1 là 2 số chẵn liên tiếp

tích của 2 số chẵn luôn chia hết cho 8 =>(p-1)(p+1) chia hết cho 8(1)

do p>13=>p chia 3 dư 2 hặc dư 1

nếu p chia 3 dư 1=>p=3k+1 =>p-1=3k=>p-1 chia hết cho 3=>(p-1)(p+1) chia hết cho 3  (k thuộc N*)

nếu p chia 3 dư 2=>p=3k+2=>p+1=3k+3=3(k+1)=>p+1 chia hết cho 3=>(p-1)(p+1) chia hết cho 3

=>(p-1)(p+1) lu

1 tháng 12 2016

sai roooooif

5 tháng 5 2017

Lan Hương ơi !!! M đố mấy bài này thì bố thằng nào làm nổi toàn câu khó.

T chịu luôn , t không biết.

7 tháng 6 2015

Giải:

 a) Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2 ---> p có dạng 2k+1 (k thuộc N, k > 0) 
...Xét 2 TH : 
...+ k chẵn (k = 2n) ---> p = 2k+1 = 2.2n + 1 = 4n+1 
...+ k lẻ (k = 2n-1) ---> p = 2k+1 = 2.(2n-1) + 1 = 4n-1 
...Vậy p luôn có dạng 4n+1 hoặc 4n-1 

b) Mọi số nguyên tố p lớn hơn 3 đều ko chia hết cho 3 ---> p có dạng 3k+1 hoặc 3k-1 
...Nếu k lẻ thì p sẽ chẵn và nó ko phải là số nguyên tố (vì p > 3). 
...Vậy k phải chẵn, k = 2n với n > 0 (để p > 3).Xét 2 TH : 
...+ p = 3k+1 = 3.2n + 1 = 6n+1 
...+ p = 3k-1 = 3.2n -1 = 6n - 1 
...Vậy p luôn có dạng 6n+1 hoặc 6n-1.

 

 

 

7 tháng 6 2015

Cách 2:

a) Mỗi số tự nhiên chia cho 4 có thể dư 0; 1;2;3

=> có thể có các dạng sau: 4n - 1; 4n ; 4n + 1 ; 4n + 2

Vì p là số nguyên tố nên p > 2 nên p lẻ => p không thể bằng 4n hoặc 4n + 2

Vậy p có thể có dạng 4n - 1 hoặc 4n + 1

b) Tương tự, mọi số tự nhiên đều có thể viết dạng: 6n - 2; 6n - 1; 6n ; 6n + 1;  6n + 2; 6n + 3

Vì p là số nguyên tố > 3 => p không chia hết cho 2 và 3

=> p không thể = 6n - 2; 6n; 6n + 2 ; 6n + 3

Vậy p có thể có dạng 6n - 1 hoặc 6n + 1

 

28 tháng 10 2015

hiệu 2 số cũng là số nguyên tố bạn à

2 tháng 1 2016

2n + 1 là số nguyên tố

Nếu 2n chia 3 dư 2 < = > 2n + 1 chia hết cho 3 (loại)

Mà 2n không chia hết cho 3

< = > 2n chia 3 dư 1

< = > 2n - 1 chia hết cho 3

< = > 2n - 1 là hợp số 

 

2 tháng 1 2016

......./ll............ll

5 tháng 4 2015

dễ mà

ta thấy n^2 là 1 số chính phương mà 1 số chính phương chia 3 dư 0 ;1

do n là snt >3=>n^2chia 3 dư1

=>n^2=3k+1

=>n^2+2006=3k+1+2006=3k+2007=3(k+669) chia hết cho 3

vậy n^2+2006 là hợp số

18 tháng 12 2016

hop so

n>3=>n không chia hết cho 3

=>n2 không chia hết cho 3

=>n2=3q+1(tính chất của số chính phương)

=>n2+2012=3q+1+2012=3q+2013=3(q+671) chia hết cho 3

=>n2+2012 là hợp số

 

31 tháng 8 2015

b) n chia cho 17 dư 13 => n - 13 chia hết cho 17

n chia cho 37 dư 23 => n - 23 chia hết cho 23

=> 2n - 26 chia hết cho 17 => 2n - 26 + 17 = 2n - 9 chia hết cho  17

 2n - 46 chia hết cho 37 => 2n - 46 + 37 = 2n - 9 chia hết cho 37

=> 2n - 9 chia hết cho 17 và 37. 17 và 37 nguyên tố cùng nhau nên

2n - 9 chia hết cho 17.37 = 629

=> 2n - 9 + 629 chia hết cho 629 

Hay 2n + 620 chia hết cho 629

mà 2n + 620 = 2.(n + 310) nên 2.(n + 310) chia hết cho 629 . vì 2 và 629 nguyên tố cùng nhau nên n + 310 chia hết cho 629

=> n chia cho 629 dư  319 (629 - 310 = 319)