Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)
Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)
Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).
Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)
=>\(xy+\frac{1}{xy}\in Z\)
=>\(\left(xy+\frac{1}{xy}\right)^3\)
=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)
=>ĐPCM
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
Gọi số cần tìm là A
Ta xét các trường hợp
voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu
voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu
Ma số nguyên tố chẵn duy nhất là 2 nên A = 2
ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2
Ta có x2y2 = 2x2 + 2y2
<=> x2(y2 - 2) = 2y2
<=> x2 = (2y2)/(y2 - 2) ≥ 4
<=> y2 >= 2y2 - 4
<=> y2 <= 4
vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)
Giả sử (x;p) = 1 thì ta thấy (y,p) = 1
Ta có: \(x^2\equiv-y^2\left(mod\text{ p}\right)\)
\(\Leftrightarrow x^{4k+2}\equiv-y^{4k+2}\left(mod\text{ p}\right)\)
\(\Leftrightarrow1\equiv-1\left(mod\text{ p}\right)\)(Định lí Fermat)
Do đó \(\left(x;p\right)\ne1\Rightarrow x⋮p\)và dễ thấy \(y⋮p\)(Đpmcm)