K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>OBAC là tứ giác nội tiếp

=>O,B,A,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

c: Điểm H ở đâu vậy bạn?

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).a) cm: A,B,O,C cùng thuộc một đường tròn.b) cm: OA vuông BC tại H và OD2 = OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.c) cm: BC trùng với tia phân giác của góc DHE.d) Từ D kẻ đường thẳng song song với BE, đường...
Đọc tiếp

 Bài 1: Từ điểm A ở bên ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến đường tròn (O) (B,C là hai tiếp điểm). Kẻ cát tuyến ADE vs đường tròn (O) (D nằm giữa A và E).

a) cm: A,B,O,C cùng thuộc một đường tròn.

b) cm: OA vuông BC tại H và OD= OH.OA. Từ đó suy ra tam giác OHD đồng dạng vs tam giác ODA.

c) cm: BC trùng với tia phân giác của góc DHE.

d) Từ D kẻ đường thẳng song song với BE, đường thẳng này cắt AB, AC lần lượt tại M và N. cm: D là trung điểm MN.

Bài 2: Cho đường tròn tâm O bán kính R, dây BC khác đường kính. Hai tiếp tuyến của đường tròn (O,R) tại B và tại C cắt nhau tại A. Kẻ đường kính CD, kẻ BH vuông góc vs CD tại H.

a) cm: A,B,O,C cùng thuoojcj một đường tròn. Xác định tâm và bán kính của đường tròn đó.

b) cm: AO vuông góc vs BC. Cho biết R=15cm, BC=24cm. Tính AB, OA.

c) cm: BC là tia phân giác của góc ABH.

d) Gọi I là giao điểm của AD và BH, E là giao điểm của BD và AC. cm: IH=IB.

0
23 tháng 11 2018

a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC

c,Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH

mình chỉ biết làm câu a và c thôi mong bạn thông cảm

9 tháng 12 2018
Cùng câu hỏi :))
21 tháng 1 2018
Mình gợi ý bạn theo đó làm nha. 1. bạn gọi giao điểm của OA là K. Xét 2 tam giác vuông AOB và AOC có trung tuyến ứng với cạnh huyền nên bằng 1/2 cạnh đó. từ đó suy ra KO=KB=KC=KA. nên 4 điểm đó thuộc 1 đường tròn 2. Gọi giao điểm của OA và BC là M. cm M là trung điểm của BC rồi tính BM từ đó tính được AB theo hệ thức lượng trong tg vuông rồi tính OA theo định lí Pytago 3. bạn c/m BH//AC =>góc HBC= góc BCA. Mà góc BCA =góc CBA(tự cm) =>góc HBC = góc CBA. nên BC là tia pg
27 tháng 11 2018

Bạn tự vẽ hình nhé

a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC

b\()\)Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH

c,Gọi G là giao của BD và AC

\(\Delta DCG\)có OA \(//DG\)\((\)cùng \(\perp BC\)\()\); OD=OC
=> A là trung điểm của GC
Có BH//AC, theo hệ quả của định lý Thales:

\(\frac{BI}{AG}=\frac{ID}{IA}=\frac{IH}{AC}\)

=> IH=IB(đpcm)

Chúc bạn học tốt 

21 tháng 12 2020

PS. Em đã làm được rồi ạ.

NV
21 tháng 12 2020

\(ABC\) cân tại A \(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

\(\left\{{}\begin{matrix}\widehat{ACB}+\widehat{BCH}=90^0\\\widehat{CBH}+\widehat{BCH}=90^0\end{matrix}\right.\) \(\Rightarrow\widehat{ACB}=\widehat{CBH}\)

\(\Rightarrow\widehat{ABC}=\widehat{CBH}\)

28 tháng 12 2023

a: Xét tứ giác ABOC có

\(\widehat{OBA}+\widehat{OCA}=90^0+90^0=180^0\)

=>ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC tại trung điểm K của BC

K là trung điểm của BC

nên \(KB=KC=\dfrac{BC}{2}=12\left(cm\right)\)

Ta có: ΔBKO vuông tại K

=>\(KB^2+KO^2=OB^2\)

=>\(OK^2=15^2-12^2=81\)

=>\(OK=\sqrt{81}=9\left(cm\right)\)

Xét ΔOBA vuông tại B có BK là đường cao

nên \(OK\cdot OA=OB^2\)

=>\(OA=\dfrac{15^2}{9}=25\left(cm\right)\)

Ta có: ΔOBA vuông tại B

=>\(BO^2+BA^2=OA^2\)

=>\(BA^2=25^2-15^2=400\)

=>\(BA=\sqrt{400}=20\left(cm\right)\)

c: Sửa đề: E là giao điểm của AC và BD

Ta có: BH\(\perp\)CD

AC\(\perp\)CD

Do đó: BH//CD

Xét ΔDCA có HI//CA

nên \(\dfrac{HI}{CA}=\dfrac{DI}{DA}\left(3\right)\)

Xét ΔDAE có IB//AE
nên \(\dfrac{IB}{AE}=\dfrac{DI}{DA}\left(4\right)\)

Xét (O) có

ΔDBC nội tiếp

DC là đường kính

Do đó: ΔDBC vuông tại B

=>DB\(\perp\)BC tại B

=>BC\(\perp\)DE tại B

=>ΔCBE vuông tại B

Ta có: \(\widehat{ABE}+\widehat{ABC}=\widehat{CBE}=90^0\)

\(\widehat{AEB}+\widehat{ACB}=90^0\)(ΔCBE vuông tại B)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABE}=\widehat{AEB}\)

=>AB=AE
mà AB=AC

nên AE=AC

Từ (3) và (4) suy ra \(\dfrac{HI}{CA}=\dfrac{IB}{AE}\)

mà CA=AE

nên HI=IB