K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
24 tháng 3 2023

Em kiểm tra lại đề, ABCE dù ghi tới 4 điểm ra nhưng bản chất nó là 1 tam giác chứ ko phải tứ giác (E nằm trên BC)

24 tháng 3 2023

Anh giúp em!

https://hoc24.vn/cau-hoi/duong-thang-d-xcosa-ysina-2sina-3-cos-a-4-0-luon-tiep-xuc-voi-duong-tron-nao-sao-day-a-tam-i3-2-va-r-4b-tam-i-32-va-r-4c-tam-i00-va-r-1d-tam-i-3-2-va-r-4.7819184821546 

9 tháng 7 2020

sdadssad

bạn sáng ko đc trả lời spam

DFCE nội tiếp

=>góc DFE=góc DCE=90 độ

ΔDOF đồng dạng với ΔDAB

=>DO/DA=DF/DB(1)

ΔOAB vuông tại  B 

=>OA^2=BO^2+BA^2

=>AB=Rcăn 3

=>DA=R căn 7

(1) =>R/Rcăn7=DF/2R

=>DF=2R/căn 7

Kẻ BH vuông góc DA

\(S_{ABD}=\dfrac{1}{2}\cdot BD\cdot AB=\dfrac{1}{2}\cdot BH\cdot DA\)

=>BH=2*Rcăn 3/căn 7

=>\(S_{BDF}=\dfrac{2R^2\sqrt{3}}{7}\)

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

8 tháng 7 2021

O A B D E C H P F N M I

a) Ta có \(\sin\widehat{OAB}=\frac{OB}{OA}=\frac{1}{2}\). Suy ra \(\widehat{BAC}=2\widehat{OAB}=60^0\)

Vì AB = AC nên \(\Delta ABC\) đều. Vậy \(BC=AB=OB\sqrt{3}=R\sqrt{3}\)

Gọi I là tiếp điểm của FN với (O). Ta có:

\(\widehat{MON}=\widehat{IOM}+\widehat{ION}=\frac{1}{2}\left(\widehat{IOB}+\widehat{IOC}\right)=\frac{1}{2}\widehat{BOC}=60^0=\widehat{MCN}\)

Suy ra tứ giác MNCO nội tiếp.

b) Theo hệ thức lượng: \(\overline{AH}.\overline{AO}=AB^2=\overline{AD}.\overline{AE}\). Suy ra tứ giác DHOE nội tiếp

Ta thấy \(OD=OE,HO\perp HB\), do đó HO,BC là phân giác ngoài và phân giác trong \(\widehat{DHE}\)

Dễ thấy D và P đối xứng nhau qua OA vì dây cung \(DP\perp OA\)

Vì \(\widehat{DHE}+\widehat{DHP}=2\left(\widehat{DHB}+\widehat{DHA}\right)=180^0\) nên P,H,E thẳng hàng.

c) Do N,O,E thẳng hàng nên \(\widehat{DOE}=180^0-\widehat{MON}=120^0\). Suy ra \(DE=R\sqrt{3}\)

Theo hệ thức lượng thì:

\(AD.AE=AB^2\Rightarrow AD^2+AD.DE=AB^2\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-\left(\frac{AB}{DE}\right)^2=0\)

\(\Rightarrow\left(\frac{AD}{DE}\right)^2+\frac{AD}{DE}-1=0\) vì \(AB=DE=R\sqrt{3}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{AD}{DE}=\frac{-1+\sqrt{5}}{2}\left(c\right)\\\frac{AD}{DE}=\frac{-1-\sqrt{5}}{2}\left(l\right)\end{cases}}\) vì \(\frac{AD}{DE}>0\)

\(\Rightarrow\frac{AD}{AE}=\frac{\sqrt{5}-1}{\sqrt{5}+1}=\frac{3-\sqrt{5}}{2}.\)

24 tháng 10 2017

mk ko bt 123

24 tháng 10 2017

123 làm được rồi help mình câu 4