K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2020

Xét \(\Delta COM\)và \(\Delta CED\)có:

     \(\widehat{COM}=\widehat{CED}=90^0\)

     \(\widehat{ECD}\): góc chúng

Do đó \(\Delta COM\)\(\approx\Delta CED\left(g.g\right)\)

\(\Rightarrow\frac{CO}{CE}=\frac{CM}{CD}\Leftrightarrow CM.CE=CO.CD=R.2R=2R^2\)(1)

\(\Delta OBD\)vuông tại O nên \(BD^2=OB^2+OD^2\)(định lý Pythagoras)

\(=R^2+R^2=2R^2\)(2)

Từ (1) và (2) suy ra \(CM.CE+BD^2=2R^2+2R^2=4R^2\)

3 tháng 2 2020

điểm N lm j z bạn

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

a: Sửa đề: \(EM\cdot AM=MF\cdot OA\)

\(\widehat{EMO}=\widehat{EMF}+\widehat{OMF}\)

=>\(\widehat{EMF}+\widehat{OMF}=90^0\)(1)

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMO}+\widehat{FMO}=\widehat{AMF}=90^0\left(2\right)\)

Từ (1),(2) suy ra \(\widehat{EMF}=\widehat{AMO}\)

=>\(\widehat{EMF}=\widehat{OAM}\)

ΔMEO vuông tại M

=>\(\widehat{MEO}+\widehat{MOE}=90^0\)

=>\(\widehat{MEF}+\widehat{MOE}=90^0\)(3)

Ta có: OM nằm giữa OA và OE

=>\(\widehat{AOM}+\widehat{MOE}=90^0\)(4)

từ (3) và (4) suy ra \(\widehat{MEF}=\widehat{AOM}\)

Xét ΔMEF và ΔAOM có

\(\widehat{MEF}=\widehat{AOM}\)

\(\widehat{EMF}=\widehat{OAM}\)

Do đó: ΔMEF đồng dạng với ΔAOM

=>ME/AO=MF/AM

=>\(ME\cdot AM=AO\cdot MF\)

b: Xét (O) có

ΔAIB nội tiếp

AB là đường kính

Do đó: ΔAIB vuông tại I

=>AI\(\perp\)SB

Xét ΔSAB có

BM,SO là đường cao

BM cắt SO tại F

Do đó; F là trực tâm

=>AF\(\perp\)SB

mà AI\(\perp\)SB(cmt)

và AF,AI có điểm chung là A

nên A,I,F thẳng hàng

 

a) Xét ΔDAB có

DO là đường trung tuyến ứng với cạnh AB(O là trung điểm của AO)

DO là đường cao ứng với cạnh AB(gt)

Do đó: ΔDAB cân tại D(Định lí tam giác cân)

Suy ra: \(DA=DB\)(hai cạnh bên)

hay \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)

Xét (O) có 

\(\widehat{AID}\) là góc nội tiếp chắn cung AD

\(\widehat{BID}\) là góc nội tiếp chắn cung BD

mà \(sđ\stackrel\frown{DA}=sđ\stackrel\frown{DB}\)(cmt)

nên \(\widehat{AID}=\widehat{BID}\)

hay ID là tia phân giác của \(\widehat{AIB}\)(đpcm)

b) Xét (O) có 

\(\widehat{AIB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{AIB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{FIB}=90^0\)

Xét tứ giác BIFO có 

\(\widehat{FOB}\) và \(\widehat{FIB}\) là hai góc đối

\(\widehat{FOB}+\widehat{FIB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: BIFO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

hay B,I,F,O cùng thuộc 1 đường tròn(đpcm)