Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ODAE có
góc ODA+góc OEA=180 độ
=>ODAE là tứ giác nội tiếp
b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)
\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)
c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có
góc IDK chung
=>ΔDIK đồng dạng vơi ΔDHE
=>DI/DH=DK/DE
=>DH*DK=DI*DE=2*IE^2
A O D H E C B
a) Xét ODE, có: \(\widehat{DOE}\)=90*:
OD=OE=R
=> DOE vuông cân tại O
và DE2=OD2+OE2 (Định lý Py-ta-go trong tam giác DOE vuông )
<=> DE2=2R2
<=> DE=\(\sqrt{2}R\)
và có DE.OH=OD.OE ( Hệ thức lượng trong DOE vuông)
<=> \(\sqrt{2}R\).OH= R2
<=> OH=\(\frac{R^2}{\sqrt{2}R}\)=\(\frac{R}{\sqrt{2}}\)
Xét OHC, có: \(\widehat{DHC}\)=90*:
HC2= DC2 - OH2
<=> HC2= 9R2- \(\frac{R^2}{2}\)
<=> HC2= \(\frac{17R^2}{2}\)
=>HC=\(\frac{R\sqrt{34}}{2}\)(cm) (1)
mà DH=HE=\(\frac{DE}{2}\)= \(\frac{\sqrt{2}R}{2}\)(2)
Từ (1) và (2)=> DC=HC+DH
= \(\frac{\sqrt{34}R}{2}+\frac{\sqrt{2}R}{2}\)
= \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)
Ta có: CE= HC+HE
= \(\frac{\sqrt{34}R}{2}-\frac{\sqrt{2}R}{2}\)
= \(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm )
Vậy DC=\(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)
EC=\(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm)
b) Ta có: DC.CE=AB.BC
<=> \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}.\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}=4R.2R\)
<=> 8R2=8R2
Vậy CD.CE=AB.BC
b) Xét ΔCEB và ΔCAD có
\(\widehat{CEB}=\widehat{CAD}\left(=180^0-\widehat{DEB}\right)\)
\(\widehat{C}\) chung
Do đó: ΔCEB\(\sim\)ΔCAD(g-g)
Suy ra: \(\dfrac{CE}{CA}=\dfrac{CB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(CE\cdot CD=CA\cdot CB\)(đpcm)
a)Áp dụng định lí py-ta-go có:
\(DE=\sqrt{OD^2+OE^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)
Dễ chứng minh được: \(\Delta EBC\sim\Delta DAC\left(g.g\right)\)
\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CE}{DC}\)\(\Rightarrow CD=\dfrac{AC.BC}{EC}=\dfrac{\left(OA+OC\right).\left(OC-OB\right)}{DC-DE}\)
\(\Leftrightarrow CD=\dfrac{8R^2}{DC-\sqrt{2}R}\)
\(\Leftrightarrow DC^2-\sqrt{2}R.DC-8R^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\\CD=\dfrac{R\left(-\sqrt{34}+\sqrt{2}\right)}{2}\left(ktm\right)\end{matrix}\right.\)
\(\Rightarrow CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)
Có \(EC=DC-DE=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}-\sqrt{2}R=\dfrac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)
Vậy...