K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Xét ΔCEB và ΔCAD có 

\(\widehat{CEB}=\widehat{CAD}\left(=180^0-\widehat{DEB}\right)\)

\(\widehat{C}\) chung

Do đó: ΔCEB\(\sim\)ΔCAD(g-g)

Suy ra: \(\dfrac{CE}{CA}=\dfrac{CB}{CD}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(CE\cdot CD=CA\cdot CB\)(đpcm)

6 tháng 7 2021

a)Áp dụng định lí py-ta-go có:

 \(DE=\sqrt{OD^2+OE^2}=\sqrt{R^2+R^2}=\sqrt{2}R\)

Dễ chứng minh được: \(\Delta EBC\sim\Delta DAC\left(g.g\right)\)

\(\Rightarrow\dfrac{BC}{AC}=\dfrac{CE}{DC}\)\(\Rightarrow CD=\dfrac{AC.BC}{EC}=\dfrac{\left(OA+OC\right).\left(OC-OB\right)}{DC-DE}\)

\(\Leftrightarrow CD=\dfrac{8R^2}{DC-\sqrt{2}R}\)

\(\Leftrightarrow DC^2-\sqrt{2}R.DC-8R^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\\CD=\dfrac{R\left(-\sqrt{34}+\sqrt{2}\right)}{2}\left(ktm\right)\end{matrix}\right.\)

\(\Rightarrow CD=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)

Có \(EC=DC-DE=\dfrac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}-\sqrt{2}R=\dfrac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)

Vậy...

20 tháng 2 2017
Ý b . Xét tam giác ABE & tam giác ADB Có : góc BAD chung ; Góc ABE = góc BDA ( cùng chắn cung BE ) Suy ra 2 tam giác đồng dạng theo trường hợp g.g => AB/AD = AE/AB => AB^2 = AE.AD
20 tháng 2 2017

( Bạn tự vẽ hình né . )_

Gọi M là trung điểm của OA 

Xét tam giác OBA vuông tại B có BM là đường trung tuyến ứng với cạnh huyền OA 

=> OM = MA = MB 

Cntt trong tam giác COA : ta được : OM = MC= MA

từ đó suy ra :  MA = MB = MC = MO 

Suy ra. 4 điểm cùng thuộc đtron tâm M 

a: Xét tứ giác ODAE có

góc ODA+góc OEA=180 độ

=>ODAE là tứ giác nội tiếp

b: \(AE=\sqrt{\left(3R\right)^2-R^2}=2\sqrt{2}\cdot R\)

\(OI=\dfrac{OE^2}{OA}=\dfrac{R^2}{3R}=\dfrac{R}{3}\)

c: Xét ΔDIK vuông tại I và ΔDHE vuông tại H có

góc IDK chung

=>ΔDIK đồng dạng vơi ΔDHE

=>DI/DH=DK/DE

=>DH*DK=DI*DE=2*IE^2

25 tháng 7 2018

sao OC = 3R được bạn????

22 tháng 7 2019

A O D H E C B

a) Xét ODE, có: \(\widehat{DOE}\)=90*:

OD=OE=R

=> DOE vuông cân tại O

và DE2=OD2+OE2 (Định lý Py-ta-go trong tam giác DOE vuông )

<=> DE2=2R2

<=> DE=\(\sqrt{2}R\)

và có DE.OH=OD.OE ( Hệ thức lượng trong DOE vuông)

<=> \(\sqrt{2}R\).OH= R2

<=> OH=\(\frac{R^2}{\sqrt{2}R}\)=\(\frac{R}{\sqrt{2}}\)

Xét OHC, có: \(\widehat{DHC}\)=90*:

HC2= DC2 - OH2

<=> HC2= 9R2\(\frac{R^2}{2}\)

<=> HC2\(\frac{17R^2}{2}\)

=>HC=\(\frac{R\sqrt{34}}{2}\)(cm) (1)

mà DH=HE=\(\frac{DE}{2}\)\(\frac{\sqrt{2}R}{2}\)(2)

Từ (1) và (2)=> DC=HC+DH

                              = \(\frac{\sqrt{34}R}{2}+\frac{\sqrt{2}R}{2}\)

                              = \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)

Ta có: CE= HC+HE

               = \(\frac{\sqrt{34}R}{2}-\frac{\sqrt{2}R}{2}\)

               = \(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm )

Vậy DC=\(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}\)(cm)

      EC=\(\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}\)(cm)

b) Ta có: DC.CE=AB.BC

<=> \(\frac{R\left(\sqrt{34}+\sqrt{2}\right)}{2}.\frac{R\left(\sqrt{34}-\sqrt{2}\right)}{2}=4R.2R\)

<=>  8R2=8R2

 Vậy CD.CE=AB.BC