K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
31 tháng 5 2021
Do tứ giác BCEF nội tiếp nên ME . MF = MB . MC
Lại có tứ giác BCKA nội tiếp nên MC . MB = MK . MA
Suy ra MK . MA = ME . MF nên tứ giác AKEF nội tiếp.
Mà tứ giác AEHF nội tiếp nên 5 điểm A, E, F, H, K đồng viên.
Suy ra \(\widehat{HKA}=\widehat{HEA}=90^o\Rightarrow HK\perp AM\).
23 tháng 4 2023
a: góc BFC=góc BEC=90 độ
=>BCEF nội tiếp
b: Xét ΔKFB và ΔKCE có
góc KFB=góc KCE
góc K chung
=>ΔKFB đồng dạng với ΔKCE
=>KF/KC=KB/KE
=>KF*KE=KB*KC
15 tháng 7 2020
từ điểm O nằm ngoài đương tròn vẽ hai tiếp tuyến AB và AC vẽ dây BD song song AC AD cắt tại K tia BK cắt AC tại I
chứng minh IC bình =IK.IB
tam giácBAI đồng dạng tam giác AKI
i là trung điểm ac
tìm vị trí A để CK vuông góc AB
a) Xét tứ giác AEHF có \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\)
=> AEHF là tứ giác nt
b) Xét tứ giác BCEF có 2 góc \(\widehat{BFC}\)và \(\widehat{CEB}\)cùng nhìn đoạn BC một góc 90o
=> BCEF là tứ giác nt
=> \(\widehat{KBF}=\widehat{KEC}\)(cùng bù với \(\widehat{FBC}\))
Xét \(\Delta KBF\)và \(\Delta KEC\)có
\(\widehat{KBF}=\widehat{KEC}\)
\(\widehat{CKE}\)chung
=> \(\Delta KBF\)ᔕ \(\Delta KEC\)(g-g)
=> \(\frac{KB}{KE}=\frac{KF}{KC}\)
=> KB . KC = KE . KF (1)
c) Nối M với B
Xét (O) có tứ giác AMBC nội tiếp đường tròn đó
=> \(\widehat{KBM}=\widehat{KAB}\)
Xét \(\Delta KBM\)và \(\Delta KAC\)có
\(\widehat{KBM}=\widehat{KAC}\)
\(\widehat{AKC}\)chung
=> \(\Delta KBM\)ᔕ \(\Delta KAC\)(g.g)
=> \(\frac{KB}{KA}=\frac{KM}{KC}\)=> KB . KC = KA . KM (2)
Từ (1) (2) => KE . KF = KA . KM
=> \(\frac{KF}{KA}=\frac{KM}{KE}\)
Xét \(\Delta KFMvà\Delta KAE\)có
\(\widehat{AFE}\)chung
\(\frac{KF}{KA}=\frac{KM}{KE}\)
=> \(\Delta KFM\)ᔕ \(\Delta KAE\)(g-g) <=> \(\widehat{KMF}=\widehat{KEA}\)hay \(\widehat{KMF}=\widehat{FEA}\)
Xét tứ giác AMFE có \(\widehat{KMF}=\widehat{FEA}\)=> AMFE là tứ giác nội tiếp
=> A, M, F ,E cùng thuộc một đường tròn
Mà A, F, H,E cùng thuộc một đường tròn (AFHE là tgnt)
=> A,F,M,H,E cùng thuộc một đường tròn
=> AMHE là tứ giác nt
=> \(\widehat{AMH}+\widehat{AEH}=180^o\)=> \(\widehat{AMH}=180^o-\widehat{AEH}=180^o-90^o=90^o\)
=> \(MH\perp AK\)
PHẦN D NGHĨ SAU NHÉ
d) À mik có ghi thiếu. Câu d c/m: MH cố định khi A di chuyển trên cung lớn BC