Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay \(\widehat{PHB}=90^o\)
Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O)
Vậy thì \(\widehat{BCD}=90^o\Rightarrow\widehat{PCB}=90^o\)
Xét tứ giác BHCP có \(\widehat{PCB}=\widehat{PHB}=90^o\) mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp.
b) Do BHCP là tứ giác nội tiếp nên \(\widehat{HCD}=\widehat{PBH}\) (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó)
Lại có \(\widehat{ACD}=\widehat{ABD}\) (Hai góc nội tiếp cùng chắn cung AD)
\(\Rightarrow\widehat{ACH}=\widehat{ACD}+\widehat{DCH}=\widehat{ABD}+\widehat{PBH}=\widehat{PBD}=90^o\)
Vậy nên AC vuông góc CH.
c) Tứ giác CHMA nội tiếp nên \(\widehat{CAH}=\widehat{CMH}\) (Hai góc nội tiếp cùng chắn cung CH)
Lại có \(\widehat{CAH}=\widehat{CAB}=\widehat{CIB}\) (Hai góc nội tiếp cùng chắn cung CB)
Vậy nên \(\widehat{CMH}=\widehat{CIB}\)
Chúng lại ở vị trí đồng vị nên HM // Bi
Xét tam giác ABQ có H là trung điểm AB, HM // BI nên HM là đường trung bình tam giác ABQ.
Suy ra M là trung điểm AQ.
a) Theo tính chất hai tiếp tuyến cắt nhau ta có ngay = 90 o Lại có D đối xứng với B qua O nên BD là đường kính đường tròn (O) Vậy thì = 90 o⇒ = 90 o Xét tứ giác BHCP có = = 90 o mà C và H là hai đỉnh kề nhau nên BHCP là tứ giác nội tiếp. b) Do BHCP là tứ giác nội tiếp nên = (Góc ngoài tại một đỉnh bằng góc trong đỉnh đối diện với nó) Lại có = (Hai góc nội tiếp cùng chắn cung AD) ⇒ = + = + = = 90 o Vậy nên AC vuông góc CH. c) Tứ giác CHMA nội tiếp nên = (Hai góc nội tiếp cùng chắn cung CH) Lại có = = (Hai góc nội tiếp cùng chắn cung CB)