Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác MAOB có
\(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
=>MAOB là tứ giác nội tiếp
=>M,A,O,B cùng thuộc một đường tròn
b: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(2)
Từ (1) và (2) suy ra MO là đường trung trực của BA
=>MO\(\perp\)BA tại C và C là trung điểm của AB
Xét ΔMAO vuông tại A có AC là đường cao
nên \(MC\cdot MO=MA^2\left(3\right)\)
Xét (O) có
ΔAQD nội tiếp
AD là đường kính
Do đó: ΔAQD vuông tại Q
=>QA\(\perp\)QD tại Q
=>AQ\(\perp\)DM tại Q
Xét ΔADM vuông tại A có AQ là đường cao
nên \(MQ\cdot MD=MA^2\left(4\right)\)
Từ (3) và (4) suy ra \(MC\cdot MO=MQ\cdot MD\)
Lười quá, chắc mình giải câu c thôi ha.
Vẽ \(OH\) vuông góc \(d\) tại \(H\). \(AB\) cắt \(OH\) tại \(L\). \(OM\) cắt \(AB\) tại \(T\)
.
CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.
a) Vì BD là đường kính \(\Rightarrow\angle BED=90\)
Vì MB,MA là tiếp tuyến \(\Rightarrow\Delta MAB\) cân tại M và MO là phân giác \(\angle AMB\)
\(\Rightarrow MO\bot AB\Rightarrow\angle MHB=90\)
Ta có: \(\angle MHB=\angle MEB=90\Rightarrow MEHB\) nội tiếp
Xét \(\Delta MAE\) và \(\Delta MDA:\) Ta có: \(\left\{{}\begin{matrix}\angle MAE=\angle MDA\\\angle DMAchung\end{matrix}\right.\)
\(\Rightarrow\Delta MAE\sim\Delta MDA\left(g-g\right)\Rightarrow\dfrac{MA}{ME}=\dfrac{MD}{MA}\Rightarrow MA^2=MD.ME\)
b) MEHB nội tiếp \(\Rightarrow\angle MHE=\angle MBE=\angle MDB\)
Vì \(\Delta MBD\) vuông tại B có \(MB=BD=2R\Rightarrow\Delta MBD\) vuông cân tại B
\(\Rightarrow\angle MDB=45\Rightarrow\angle MHE=45\)
c) Xét \(\Delta MOB\) và \(\Delta BAF:\) Ta có: \(\left\{{}\begin{matrix}\angle MBO=\angle BFA=90\\\angle BOM=\angle BAF=\dfrac{1}{2}\angle BOA\end{matrix}\right.\)
\(\Rightarrow\Delta MOB\sim\Delta BAF\left(g-g\right)\Rightarrow\dfrac{AF}{AB}=\dfrac{OB}{MO}=\dfrac{OD}{MO}\left(1\right)\)
Vì \(\Delta MBD\) vuông cân tại B có \(BE\bot MD\Rightarrow\angle EBD=45\)
mà \(\Delta BFK\) vuông tại F \(\Rightarrow\Delta BFK\) vuông cân tại F \(\Rightarrow\angle BKF=45\)
Xét \(\Delta BAK\) và \(\Delta MOD:\) Ta có: \(\left\{{}\begin{matrix}\angle ABK=\angle DOM\left(MEHBnt\right)\\\angle BKA=\angle MDO=45\end{matrix}\right.\)
\(\Rightarrow\Delta MOD\sim\Delta BAK\left(g-g\right)\Rightarrow\dfrac{AK}{AB}=\dfrac{OD}{MO}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\dfrac{AK}{AB}=\dfrac{AF}{AB}\Rightarrow AK=AF\Rightarrow\) đpcm