K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 1

a.

Do BE là đường kinh \(\Rightarrow\widehat{BAE}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{BAE}=90^0\) hay \(AB\perp AE\)

\(\Rightarrow CD||AE\) (cùng vuông góc AB)

\(\Rightarrow sđ\stackrel\frown{AC}=sđ\stackrel\frown{DE}\Rightarrow AC=DE\)

b.

BE là đường kính nên \(\widehat{BDE}\) là góc nội tiếp chắn nửa đường tròn

\(\Rightarrow\widehat{BDE}=90^0\Rightarrow\Delta BDE\) vuông tại D \(\Rightarrow BD^2+DE^2=BE^2\)

Áp dụng định lý Pitago cho 2 tam giác vuông IAC và IBD:

\(\left(IA^2+IC^2\right)+\left(IB^2+ID^2\right)=AC^2+BD^2=DE^2+BD^2=BE^2=\left(2R\right)^2=4R^2\)

NV
2 tháng 1

loading...

18 tháng 1 2021

a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB

Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)

b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)

Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)

30 tháng 1 2021

a) ^EAB là góc nội tiếp chắn nửa đường tròn nên ^EAB = 900 hay AE⊥AB

Có AE⊥AB (cmt) và CD⊥AB (gt) nên AE//CD => Cung AC bằng cung DE hay AC = DE (đpcm)

b) ∆AIC và ∆BID vuông tại I nên IA2 + IB2 + IC2 + ID2 = (IA2 + IC2) + (IB2 + ID2) = AC2 + BD2 = ED2 + BD2 = BE2 (∆EDB có ^EDB = 900 do nó là góc nội tiếp chắn nửa đường tròn)

Mà BE2 = (2R)2 = 4R2 nên IA2 + IB2 + IC2 + ID2 = 4R2 (đpcm)

 

6 tháng 1 2018

O A B C D E I

a) Xét \(\Delta\)BAE: Có đường trung tuyến AO (O thuộc BE) với AO=BO=EO=1/2BE

=> \(\Delta\)BAE vuông tại A hay EA vuông góc AB

Mà AB và CD vuông góc với nhau => AE//CD => Tứ giác AECD là hình thang (1)

Lại có: 4 điểm A;E;C;D cùng nằm trên (O;R) => ) thuộc trung trực của AE và CD (2)

Từ (1) VÀ (2) => Hình thang AECD có trục đối xứng => Tứ giác AECD là hình thang cân

=> AC=DE (2 đg chéo) (đpcm).

b) Do AB vuông góc CD tại I 

Ta có: \(IA^2+IC^2=AC^2\)(Định lí Pytagorean)

\(IB^2+ID^2=BD^2\)(Định lí Pytagorean)

\(\Rightarrow IA^2+IB^2+IC^2+ID^2=AC^2+BD^2\)

Vì \(AC=DE\)(cmt) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=DE^2+BD^2\)(3)

Chứng minh được \(\Delta\)BDE vuông tại D (Có trung truyến DO bằng 1/2 cạnh tương ứng BE)

\(\Rightarrow DE^2+BD^2=BE^2\)(4)

Thay (4) vào (3) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=BE^2\)(5)

R là bán kính của đường trond, BE là đường kính \(\Rightarrow BE^2=\left(2R\right)^2=4R^2\)(6)

Từ (5) và (6) \(\Rightarrow IA^2+IB^2+IC^2+ID^2=4R^2\) (đpcm).

c) Mình chưa nghĩ ra ^^ 

22 tháng 9 2019

O A B C D E I

a) Ta thấy BE là đường kính của (O). Suy ra ^BAE chắn nửa đường tròn hay AB vuông góc AE

Do đó AE // CD. Mà AE,CD là hai dây của đường tròn (O) nên (AC = (DE tức AC = DE (đpcm).

b) Tương tự câu a, \(\Delta\)BED vuông tại D. Áp dụng ĐL Pytagoras ta có:

\(\left(IA^2+IC^2\right)+\left(IB^2+ID^2\right)=AC^2+BD^2=DE^2+BD^2=BE^2=4R^2\)(đpcm).

c) Áp dụng ĐL Pytagoras và hệ thức lượng trong đường tròn ta có:

\(AB^2+CD^2=\left(IA+IB\right)^2+\left(IC+ID\right)^2=\left(IA^2+IB^2+IC^2+ID^2\right)+2\left(IA.IB+IC.ID\right)\)

\(=4R^2+4\left(R^2-OI^2\right)=8R^2-4OI^2\)(đpcm).

a: Xét (O) có

ΔAKB nội tiếp

AB là đường kính

Do đó: ΔAKB vuông tại K

Xét tứ giác AKEH có \(\widehat{EHA}+\widehat{EKA}=90^0+90^0=180^0\)

nên AKEH là tứ giác nội tiếp

=>A,K,E,H cùng thuộc một đường tròn

b: Xét (O) có

\(\widehat{KAI}\) là góc nội tiếp chắn cung KI

\(\widehat{KBI}\) là góc nội tiếp chắn cung KI

Do đó: \(\widehat{KAI}=\widehat{KBI}\)

=>\(\widehat{KAE}=\widehat{KBC}\)

c: Xét (O) có

ΔAIB nội tiếp

AB là đường kính

Do đó: ΔAIB vuông tại I

Xét ΔAHE vuông tại H và ΔAIB vuông tại I có

\(\widehat{HAE}\) chung

Do đó: ΔAHE đồng dạng với ΔAIB

=>\(\dfrac{AH}{AI}=\dfrac{AE}{AB}\)

=>\(AE\cdot AI=AB\cdot AH\)

Xét ΔBHE vuông tại H và ΔBKA vuông tại K có

góc HBE chung

Do đó: ΔBHE đồng dạng với ΔBKA

=>\(\dfrac{BH}{BK}=\dfrac{BE}{BA}\)

=>\(BH\cdot BA=BE\cdot BK\)

\(AE\cdot AI+BE\cdot BK\)

\(=AH\cdot AB+BH\cdot AB\)

\(=AB^2=4R^2\)

 

4 tháng 2 2019

O A C B D I M N E F P H

a) Kẻ đường kính DP của (O), ta có: BD vuông góc BP. Mà BD vuông góc AC nên BP // AC

=> (AP = (BC => (AB = (CP => AB = CP => AB2 + CD2 = CP2 + CD2 = DP2 = 4R2 (ĐL Pytagore)

Tương tự: AD2 + BC2 = 4R2 => ĐPCM.

b) Ta có: AB2 + BC2 + CD2 + DA2 = 4R2 + 4R2 = 8R2 

Ta lại có: AC2 + BD2 = IA2 + IB2 + IC2 + ID2 + 2.IB.ID + 2.IA.IC = AB2 + CD2 + 4.IE.IF

= 4R2 + 4(R+d)(R-d) = 4R2 + 4R2 - 4d2 = 8R2 - 4d2 

c) Gọi tia NI cắt AB tại H. Dễ thấy: ^BIH = ^NID = ^NDI = ^IAB = 900 - ^IBA => IN vuông góc AB.

C/m tương tự, ta có: IM vuông góc CD => ĐPCM.

d) Đường tròn (O): Dây AB, M trung điểm AB => OM vuông góc AB. Mà AB vuông góc IN => OM // IN

Tương tự ON // IM. Do đó: Tứ giác OMIN là hình bình hành (đpcm).

e) Vì tứ giác OMIN là hình bình hành nên MN đi qua trung điểm OI. Mà OI cố định NÊN trung điểm của OI cũng cố định nên ta có đpcm.

4 tháng 2 2019

Chậc -_- bài này mình làm được lâu rồi bạn à :V Nhưng cũng cảm ơn , tớ nhờ cậu bài khác mà :(

1: góc CND=1/2*180=90 độ

Vì góc CNE+góc CKE=180 độ

nên CNEK nội tiếp 

2: Xét ΔMNE và ΔMBC có

góc MNE=góc MBC

góc M chung

=>ΔMNE đồng dạng với ΔMBC

=>MN/MB=ME/MC

=>MN*MC=MB*ME

23 tháng 5 2023

giúp em câu c được không ạ